[1] METAWELL. Metawell®-Schiffbau[EB/OL]. https://www.metawell.com/wp-content/uploads/Metawell %C2%AE-Schiffbau.pdf, 2018-3-10/2019-4-28. [2] KONG C W,NAM G W,JANG Y S,et al.Experimental strength of composite sandwich panels with cores made of aluminum honeycomb and foam[J]. Advanced Composite Materials,2014(1):43-52. [3] JEN Y M, CHANG L Y.Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams[J]. Engineering Failure Analysis, 2009(4):1282-1293. [4] RAJKUMAR S,ARULMURUGAN B,MANIKANDAN M,et al.Analysis of physical and mechanical properties of A3003 aluminum honeycomb core sandwich panels[J]. Applied Mechanics and Materials, 2017, 867:245-253. [5] KOOISTRA G W, QUEHEILLALT D T, WADLEY H N G . Shear behavior of aluminum lattice truss sandwich panel structures[J]. Materials Science and Engineering: A, 2008(1-2):242-250. [6] MOHAN K,YIP T H,IDAPALAPATI S,et al.Impact response of aluminum foam core sandwich structures[J]. Materials Science & Engineering:A,2011,529:94-101. [7] FOO C C,SEAH L K, CHAI G B.Low-velocity impact failure of aluminium honeycomb sandwich panels[J]. Composite Structures, 2008(1):20-28. [8] 石建军,吴东辉,迟波,等. Shell 91单元在复合材料蜂窝夹层结构分析中的应用[J].纤维复合材料,2006(3):40-42. [9] 李永强,李锋,何永亮. 四边固支铝基蜂窝夹层板弯曲自由振动分析[J]. 复合材料学报, 2011(3):210-216. [10] 潘晋,吴天昊,周初阳,等. 铝合金波纹夹层板在低速冲击下的耐撞性研究[J]. 武汉理工大学学报(交通科学与工程版), 2017(6):929-933. [11] 张钱城,杨立博,韩宾,等. 非对称结构铝合金波纹夹层板的三点弯曲力学性能研究[J]. 应用力学学报, 2014(6):836-842,990. [12] 李鹏. 舱室轻量化壁板结构仿真分析方法研究[D]. 青岛:中国海洋大学, 2014. [13] 中国船级社. 钢质海船入级规范[S]. 北京:人民交通出版社, 2018. |