[1] 邹和荫. 大型船舶应当发展风帆[J].天津航海,1992(2):33-34. [2] 汪洋, 王志华, 陈爱国.风帆助航的研究与应用综述[J]. 广州航海学院学报,2017(1):5-8. [3] 何建海,胡以怀,张建霞,等.风能在船舶上的应用现状及展望[J].船舶工程,2013(5):112-115. [4] 方泽江,谭俊哲,纪光英,等.逆风条件下柔性风帆性能的流固耦合研究[J].中国舰船研究, 2022, 17:1-7. [5] MILGRAM J H.The aerodynamics of sails[C]// Proceedings of the 7th Symposium on Naval Hydrodynamic. 1968. [6] MILGRAM J H.The analytical design of yacht sails[C]// The Annual Meeting of The Society of Naval Architects and Marine Engineers. 1968. [7] GENTRY A.The aerodynamics of sail interaction[C]// Proceedings of the third AIAA Symposium on the Aero/Hydronautics of Sailing. 1971. [8] LEE Y W, MIYATA H, SATO T.CFD simulation of two-sail interaction about a sailing yacht[J] . Journal of the Society of Naval Architects of Japan, 1997, 181: 25-34. [9] HEDGES K, RICHARDS P, MALLINSON G.Computer modelling of downwind sails[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 63: 95-110. [10] RICHTER H J, HORRIGAN K C, BRAUN J.Computational fluid dynamics for downwind sails[C]// SNAME 16th Chesapeake Sailing Yacht Symposium. 2003. [11] BENARD P, VIRé A, MOUREAU V, et al.Large-Eddy Simulation of wind turbines wakes including geometrical effects[J]. Computers & Fluids, 2018, 173: 133-139. [12] SPALART P R.Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]// Proceedings of first AFOSR international conference on DNS/LES. 1997. [13] AUGIER B, BOT P, HAUVILLE F, et al.Dynamic behaviour of a flexible yacht sail plan[J]. Ocean Engineering, 2013, 66:32-43. [14] RENZSH H, GRAF K.Fluid structure interaction simulation of spinnakers getting closer to reality[C]// International Conference on Innovation in High Performance Sailing Yachts. 2010. [15] CHAPIN V, CARLAN N D, HEPPEL P.Performance optimization of interacting sails through fluid structure coupling[J]. International Journal of Small Craft Technology, 2011, 153: 103-116. [16] MORVAN A, SACHER M, NêME A, et al. Efficient jib-mainsail fluid-structure interaction modelling-Validations with semi-rigid sails experiments[J]. Ocean Engineering, 2022, 243: 110210. [17] BAK S, YOO J, SONG C Y.Fluid-structure interaction analysis of deformation of sail of 30-foot yacht[J]. International Journal of Naval Architecture and Ocean Engineering, 2013(2): 263-276. [18] CALì M, OLIVERI S M, CELLA U, et al.Mechanical characterization and modeling of downwind sailcloth in fluid-structure interaction analysis[J]. Ocean Engineering, 2018, 165: 488-504. [19] SACHER M, LEROUX J-B, NêME A, et al. A fast and robust approach to compute nonlinear Fluid-Structure Interactions on yacht sails-Application to a semi-rigid composite mainsail[J]. Ocean Engineering, 2020, 201: 107139. [20] DURAND M, LEROYER A, LOTHODé C, et al.FSI investigation on stability of downwind sails with an automatic dynamic trimming[J]. Ocean Engineering, 2014, 90: 129-139. [21] BAK S, YOO J.FSI analysis on the sail performance of a yacht with rig deformation[J]. International Journal of Naval Architecture and Ocean Engineering, 2019(2): 648-661. [22] HÜBNER B, WALHORN E, DINKLER D. A monolithic approach to fluid-structure interaction using space-time finite elements[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193:2087-2104. [23] D'UBALDO O, GHELARDI S, RIZZO C M. FSI simulations for sailing yacht high performance appendages[J]. Ships and Offshore Structures, 2021(2): 200-215. [24] LOMBARDI M, CREMONESI M, GIAMPIERI A, et al.A strongly coupled fluid-structure interaction model for wind-sail simulation[C]// RINA International Conference on High Performance Yacht Design. 2012. [25] LOMBARDI M, PAROLINI N, QUARTERONI A, et al.Numerical simulation of sailing boats: dynamics, FSI, and shape optimization[M]. Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer. 2012: 339-377. [26] DURAND M.Interaction fluide-structure souple et legere: application aux voiliers [D]. Nantes: Ecole centrale de Nantes, 2012. [27] CIRELLO A, INGRASSIA T, MANCUSO A, et al.Improving the Downwind Sail Design Process by Means of a Novel FSI Approach[J]. Journal of Marine Science and Engineering, 2021(6): 624. [28] AUGIER B, BOT P, HAUVILLE F, et al.Experimental validation of unsteady models for fluid structure interaction: Application to yacht sails and rigs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 101: 53-66. [29] DEPARDAY J, AUGIER B, BOT P.Experimental analysis of a strong fluid-structure interaction on a soft membrane—Application to the flapping of a yacht downwind sail[J]. Journal of Fluids and Structures, 2018, 81: 547-564. [30] DEPARDAY J.Experimental studies of fluid-structure interaction on downwind sails [D]. Brest: Université de Bretagne occidentale-Brest, 2016. [31] BOT P, VIOLA I M, FLAY R G, et al.Wind-tunnel pressure measurements on model-scale rigid downwind sails[J]. Ocean Engineering, 2014, 90: 84-92. [32] YOO J, KIM H T.Computational and experimental study on performance of sails of a yacht[J]. Ocean Engineering, 2006(10): 1322-1342. [33] GHELARDI S, FREDA A, RIZZO C M, et al.A Fluid-Structure Interaction case study on a square sail in a wind tunnel[J]. Ocean Engineering, 2018, 163: 136-147. [34] AUBIN N, AUGIER B, DEPARDAY J, et al.Performance enhancement of downwind sails due to leading edge flapping: A wind tunnel investigation[J]. Ocean Engineering, 2018, 169: 370-378. [35] SMITH M J, PATON J, MORVAN H, et al.Capturing sail shape in a wind tunnel environment[J]. The Photogrammetric Record, 2012, 138: 195-209. |