[1] 吴诗谦,赵建华,欧阳光耀.基于振动信号的船用空压机故障诊断[J].噪声与振动控制,2017,37(4):180-184. [2] 王跃飞,张振涛,张波,等.利用声发射的往复空压机环状阀泄漏故障诊断试验[J].西安交通大学学报,2012,46(9):26-30. [3] 王永坚,胡欢欢,李品芳.EEMD能量熵和奇异值熵与SVM融合的船用空压机故障诊断[J].上海海事大学学报,2020,41(4):95-102. [4] 胡欢欢,王永坚,邱晨.HHT和马氏距离融合的船用空压机故障诊断[J].集美大学学报(自然科学版),2020,25(1):50-56. [5] JIA L,CHOW T W S, WANG Y, et al. Multiscale residual attention convolutional neural network for bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2022,71: 1-13. [6] WANG H,LI Y F.Iterative error self-correction for robust fault diagnosis of mechanical equipment with noisy label[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-13. [7] DU W,GUO Z,LI C,et al.From anomaly detection to novel fault discrimination for wind turbine gearboxes with a sparse isolation encoding forest[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-10. [8] XIA M,LI T,XU L,et al.Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics,2017,23(1):101-110. [9] MALIK J,DEVECIOGLU O C,KIRANYAZ S,et al.Real-time patient-specific ECG classification by 1D self-operational neural networks[J]. IEEE Transactions on Biomedical Engineering,2021,69(5):1788-1801. [10] GUO X,CHEN L,SHEN C.Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement,2016,93:490-502. [11] 王冉,石如玉,胡升涵,等.基于声成像与卷积神经网络的轴承故障诊断方法及其可解释性研究[J].振动与冲击,2022,41(16):224-231. [12] WANG Z,OATES T.Imaging time-series to improve classification and imputation[C]//24th International Joint Conference on Artificial Intelligence,Buenos Aires,Argentina,2015. [13] 侯一民,张荣彬.基于EEMD的单通道机械噪声信号盲分离[J].制造业自动化,2017,39(11):134-137. [14] 王晓龙,唐贵基.一种基于连续小波变换的滚动轴承早期故障诊断新方法[J].推进技术,2016,37(8):1431-1437. |