[1] KAUSHAL H, KADDOUM G.Underwater optical wireless communication[J]. IEEE Access, 2016, 4:1518-1547. [2] SPAGNOLO G S, COZZELLA L, LECCESE F.Underwater optical wireless communications: overview[J]. Sensor, 2020,20(2261): 1-14. [3] 王博, 吴琼, 刘立奇, 等.水下无线光通信系统研究进展[J]. 激光技术, 2022, 46(1):99-109. [4] WU T C, CHI Y C, WANG H Y, et al.Blue laser diode enables underwater communication at 12.4Gbps[J]. Scientific Reports, 2017, 7(40480):1-10. [5] KONGSBERG. cNODE®MANTIS[EB/OL].[2024-05-08]. https://www.kongsberg.com/globalassets/discovery/commerce/navigation-positioning/cnode-mantis/494054a-cnode-mantis-data-sheet.pdf. [6] 赵云江, 乔钢, 刘凇佐, 等.带内全双工水声通信技术研究现状与展望[J].数字海洋与水下攻防, 2021, 4(3):195-205. [7] KILFOYLE D B, BAGGEROER A B.The state of the art in underwater acoustic telemetry[J]. IEEE Journal of Oceanic Engineering, 2000,25(1): 4-27. [8] SHIMURA T, KIDA Y, DEGUCHI M, et al.High-rate underwater acoustic communication at over 600 kbps×km for vertical uplink data transmission on a full-depth lander system[C]// 2021 Fifth Underwater Communications and Networking Conference (UComms). Lerici, Italy: IEEE, 2021: 1-4. [9] 杨健敏, 王佳惠, 乔钢, 等. 水声通信及网络技术综述[J].电子与信息学报, 2024, 46(1): 1-21. [10] 杨劭坚. 浙大自主研发水声通信机实现14公里高速率通信[EB/OL].(2022-03-04)[2024-04-15]. https://www.zju.edu.cn/2022/0304/c65659a2503328/pagem.htm. [11] 朱敏, 武岩波.水声通信技术进展[J].中国科学院院刊, 2019(3):289-296. [12] LIU Y, XUE J, ZHU M, et al.The acoustic system of the fendouzhe HOV[J]. Sensor, 2021, 21(7478): 1-19. [13] GAO I X, ZHANG F F, ITO M.Underwater acoustic positioning system based on propagation loss and sensor network[C]//2012 Oceans-Yeosu: IEEE, 2012:1-4. [14] 高国青, 叶湘滨, 乔纯捷, 等.水下声定位系统原理与误差分析[J].兵器装备工程学报, 2010, 31(6):95-97. [15] JAKUBA M V, ROMAN C N, SINGH H, et al.Long-baseline acoustic navigation for under-ice autonomous underwater vehicle operations[J]. Journal of Field Robotics, 2008, 25(11): 861-879. [16] VICKERY K.Acoustic positioning systems “a practical overview of current systems”[C]//Dynamic Positioning Conference 1998. Houston, USA:Marine Technology Society,1998: 1-16. [17] 孙大军, 郑翠娥, 张居成, 等.水声定位导航技术的发展与展望[J].中国科学院院刊, 2019,34(3):331-338 [18] 王庆琛, 朱仲本. 哈工程“星海1000”号极地AUV探幽北极[EB/OL].(2023-10-02)[2024-04-20]. https://news.hrbeu.edu.cn/info/1141/78179.htm. [19] YOSHIDA H, OYONEKURA T, TAKAHASHI M, et al.Electromagnetic under-the-ice localization and communication[C]//OCEANS 2022. Hampton Roads, VA, USA: IEEE, 2022:1-6. [20] SUN K, CUI W C, CHEN C.Review of underwater sensing technologies and Applications[J]. Sensor, 2021, 21(23): 1-28. [21] 李硕, 曾俊宝, 王越超.自治/遥控水下机器人北极冰下导航[J].机器人, 2011, 33(4): 509-512. [22] RANDENI S, SCHNEIDER T, SCHMIDT H.Construction of a high-resolution under-ice AUV navigation framework using a multidisciplinary virtual environment[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). St. Johns, NL, Canada: IEEE/OES, 2020:1-7. [23] SALAVASIDIS G, MUNAFÒ A, FENUCCI D, et al.Terrain-aided navigation for long-range AUVs in dynamic under-mapped environments[J]. Journal of Field Robotics, 2020, 30(3):402-428. [24] LIU Y, ZHANG G C, HUANG Z.Study on the arctic underwater terrain-aided navigation based on fuzzy-particle filter[J]. International Journal of Fuzzy Systems, 2021, 23(4): 1017-1026. [25] JENSEN A B O. Challenges for positioning and navigation in the Arctic[EB/OL].[2024-05-29]. https:// www.unoosa.org/documents/pdf/psa/activities/2015/RussiaGNSS/Presentations/52.pdf. [26] ISHII M, BERDERMANN J, FORTE B, et al.Space weather impact on radio communication and navigation[J]. Advances in Space Research, 2024:1-11. [27] NAZIR J, VIVEK T, JAISINGH T.Temperature stabilization in fiber optic gyroscopes for high altitude aircraft[J]. Optik. 2016, 127(20): 9701-9710. [28] AGARWALA N.Integrating UUVs for naval applications[J]. Maritime Technology and Research,2022, 4(3): 1-25. [29] 中船航海. 蓝太阳-110型光纤罗经[EB/OL]. [2024-05-10].https://www.cssc-cmc.cn/product/9.html. [30] 张海峰, 张礼伟, 王兴岭, 等. 捷联惯导系统极区导航算法优化设计及误差特性分析[J]. 中国惯性技术学报,2015,23(6): 701-706. [31] 陈驰, 吴刚, 贾洞洞, 等.科考型自主无人潜航器在极地的应用以及未来发展趋势[J].船舶, 2024, 35(1):59-69. [32] KAMINSKI C, CREES T, FERGUSON J, et al.12 days under ice-An historic AUV deployment in the Canadian high Arctic[C]//IEEE/OES Autonomous Underwater Vehicles. Monterey,USA:IEEE, 2010:1-11. [33] BELLINGHAM J G, COKELET E D, KIRKWOOD W J.Observation of warm water transport and mixing in the Arctic basin with the ALTEX AUV[C]//2008 IEEE/OES AUV. Woods Hole, USA: IEEE, 2008. [34] MOREY R M, KOVACS A, COX G F N. Electromagnetic properties of sea ice[J]. Cold Regions Science and Technology, 1984,9(1):53-75. [35] JENSEN F B, KUPERMAN W A, PORTER M B, et al.Computational ocean acoustics[M]. 2nd Edition. New York, US: Springer, 2011: 305-309. [36] HUTT D.An overview of arctic ocean acoustics[C]//Proceedings of the 3rd International Conference on Ocean Acoustics. Beijing, China: AIP Conference Proceedings, 2012: 56-68. [37] 汪品先. 深海浅说[M]. 上海:上海科技教育出版社, 2020:14-22. [38] ERBE C, DUNCAN A, VIGNESS-RAPOSA K J. Exploring animal behavior through sound: volume 1[M]. Gewerbestrasse, Switzerland: Springer, 2022: 201-202. [39] NASA. Explaining rapid climate change: tales from the ice[EB/OL]. (2006-05-09)[2024-05-11]. https:// earthobservatory.nasa.gov/features/Paleoclimatology_Evidence/paleoclimatology_evidence_2.php. [40] LINDER, C. Daily update: dispatch 21- August 4, 2002. edge of the Arctic shelf- Arctic west summer[EB/OL] (2002-08-04) [2024-04-28]. https://www.whoi.edu/science/PO/arcticedge/arctic_west02/update/update_020804.html. [41] The Electromagnetic Spectrum[M/OL]//Encyclopædia Britannica.ed.[2024-04-18].https://www.britannica.com/science/electromagnetic-radiation. [42] POPE R M, FRY E S.Absorption spectrum (380-700nm) of pure water. II. Integrating cavity measurements[J]. Applied Optics, 1997,36(33): 8710-8723. [43] MADIN K. Communicating under sea ice[EB/OL]. (2017-01-05) [2024-04-25]. https://www.whoi.edu/oceanus/feature/communicating-under-sea-ice/. [44] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2009: 30-31. [45] STOJANOVIC M, BEAUJEAN P-P J. Springer handbook of ocean engineering[M]. New York, USA: Springer, 2016:359-383. [46] MASLIN E. Subsea vehicles: a journey to the under and outer worlds[EB/OL]. (2022-02-07) [2024-05-10]. https://www.marinetechnologynews.com/news/subsea-vehicles-journey-under-617144. [47] SINGH R, BODILE R M. A quick guide to quantum communication[J]. Electrical Engineering and Systems Science-Signal Processing, 2024, arXiv:2402.15707: 1-3. [48] HU C Q, YAN Z Q, GAO J, et al.Transmission of photonic polarization states through 55-m water: towards air-to-sea quantum communication[J]. Photonic Research, 2019, 7(8): A40-A44. [49] LEE C M, COLE S, DOBLE M, et al.Marginal ice zone (MIZ) program: science and experiment plan[R]. Seattle, USA: Applied Physics Laboratory, University of Washington, 2012. [50] LEE C M, DEGRANDPRE M, GUTHRIE J, et al.Emerging technologies and approaches for in situ, autonomous observing in the Arctic[J]. Oceanography, 2022, 35(3-4): 210-221. [51] SAGEN H, SANDVEN S, HAMRE T, et al.The future arctic ocean observing system (F-AOOS)[C]//Arctic Observing Summit (AOS2020). Akureyri (Online), Iceland: AOS2020, 2020. [52] SONG A, STOJANOVIC M, CHITRE M.Underwater acoustic communications: where we stand and what is next?[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 1-6. [53] POTTER J, ALVES J, GREEN D, et al.The JANUS underwater communications standard[C]// 2014 Underwater Communications and Networking (UComms), Sestri Levante, Italy: UComms, 2014: 1-4. |