[1] ZHENG Z, HUANG Y, XIE L, et al.Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5): 1851-1859. [2] WANG N, XIE G, PAN X, et al.Full-state regulation control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8741-8750. [3] ZHOU B, HUANG B, SU Y, et al.Fixed-time neural network trajectory tracking control for underactuated surface vessels[J]. Ocean Engineering, 2021, 236: 109416. [4] CHEN L, CUI R, YANG C, et al.Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: theory and experimental results[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4024-4035. [5] WANG N, HE H.Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11):9648-9658. [6] ZHAO J, CAI C, LIU Y.Barrier Lyapunov function-based adaptive prescribed-time extended state observers design for unmanned surface vehicles subject to unknown disturbances[J]. Ocean Engineering, 2023, 270: 113671. [7] SKJETNE R, FOSSEN T I, KOKOTOVIĆ P V.Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory[J]. Automatica, 2005, 41(2): 289-298. [8] ZHU G, DU J, KAO Y.Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints[J]. Journal of the Franklin Institute, 2020, 357(13): 8591-8610. [9] CHEN X, TAN W.Tracking control of surface vessels via fault-tolerant adaptive backstepping interval type-2 fuzzy control[J]. Ocean Engineering, 2013, 70: 97-109. [10] LU J S, YU S L, ZHU G B, et al.Robust adaptive tracking control of UMSVs under input saturation: a single-parameter learning approach[J]. Ocean Engineering, 2021, 234: 108791. [11] CHEN M, JIANG B, CUI R.Actuator fault-tolerant control of ocean surface vessels with input saturation[J]. International Journal of Robust and Nonlinear Control, 2016, 26: 542-564. [12] 张强, 王琪文, 孟祥飞, 等. 考虑不确定扰动的欠驱动船舶鲁棒自适应有限时间控制[J]. 中国航海, 2023, 46(1): 16-23. [13] 赵杰, 蔡成涛, 乔人杰. 未知扰动下的无人水面艇有限时间动态预设性能控制[J]. 智能系统学报, 2023, 18(4): 849-857. [14] 张强, 朱雅萍, 孟祥飞, 等. 欠驱动船舶自适应神经网络有限时间轨迹跟踪[J]. 中国舰船研究, 2022, 17(4): 24-31. [15] ZHU G, DU J.Global robust adaptive trajectory tracking control for surface ships under input saturation[J]. IEEE Journal of Oceanic Engineering, 2020, 45(2): 442-450. [16] ZHU G, MA Y, HU S.Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation[J]. Control Engineering Practice, 2020, 105: 104652. [17] WANG N, ZHU Z, QIN H, et al.Finite-time extended state observer-based exact tracking control of an unmanned surface vehicle[J]. International Journal of Robust and Nonlinear Control, 2021, 31: 1704-1719. [18] WANG N, QIAN C, SUN J C, et al.Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1454-1462. [19] QIAN C, LIN W.A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079. [20] GU N, WANG D, PENG Z.Disturbance observers and extended state observers for marine vehicles: a survey[J]. Control Engineering Practice, 2022, 123: 105158. [21] ZOU A, KUMAR K D, DE RUITER A H J. Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113: 108792. [22] FU M, WANG T.Adaptive neural-based finite-time trajectory tracking control for underactuated marine surface vessels with position error constraint[J]. IEEE Access, 2019, 7(16): 16309-16322. [23] LIU Y, LI H, LU R, et al.An overview of finite/fixed-time control and its application in engineering systems[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12):2106-2120. [24] FOSSEN T I.Handbook of marine craft hydrodynamics and motion control[M]. New York: Wiley, 2011. |