Ship & Boat ›› 2022, Vol. 33 ›› Issue (04): 82-87.DOI: 10.19423/j.cnki.31-1561/u.2022.04.082

Previous Articles     Next Articles

Application of Machine Learning in Ship Unsinkability Design Strategy

YANG Chunlei1,2,3, HUANG Xiaohao4,5, SHENG Qingwu2, WANG Jinbao1,2,3, PAN Changchun4,5, FAN Sheming1,2,3   

  1. 1. Key Laboratory of Waterjet Propulsion, Shanghai 200011, China;
    2. Marine Design & Research Institute of China, Shanghai 200011, China;
    3. Shanghai Key Laboratory of Ship Engineering, Shanghai 200011, China;
    4. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    5. Shanghai Key Laboratory of Navigation and Location Based Services, Shanghai 200240, China
  • Received:2022-05-26 Revised:2022-06-17 Published:2023-03-17

机器学习在船舶不沉性设计策略中的应用

杨春蕾1,2,3, 黄晓皓4,5, 盛庆武2, 王金宝1,2,3, 潘常春4,5, 范佘明1,2,3   

  1. 1. 喷水推进重点实验室 上海 200011;
    2. 中国船舶及海洋工程设计研究院 上海 200011;
    3. 上海市船舶工程重点实验室 上海 200011;
    4. 上海交通大学 电子信息与电气工程学院 上海 200240;
    5. 上海北斗导航与位置服务重点实验室 上海 200240
  • 作者简介:杨春蕾(1982-),男,博士,高级工程师。研究方向:船舶波浪中操纵及水动力优化。黄晓皓(1996-),男,硕士。研究方向: 机器学习算法开发。盛庆武(1971-),男,博士,研究员。研究方向:船舶总体与性能研究。王金宝(1969-),男,博士,研究员。研究方向:船舶流体性能及优化。潘常春(1979-),男,博士,副教授。研究方向:系统控制与优化。范佘明(1962-),男,博士,研究员。研究方向:船舶水动力。

Abstract: Ship unsinkability is an important performance to evaluate the ship survivability, and it is also a key index for optimizing the subdivision strategy. However, the high cost is still a difficulty restricting the practical application of the unsinkability optimization. More effective methods will be provided with the continuous application of machine learning technology. The optimization of unsinkability subdivision is solved by using the particle swarm optimization (PSO) algorithm based on reinforcement learning. And the optimization system development and interface design is implemented for the integrated machine learning module and unsinkability design module. The effect of different parameter settings in the algorithm on the optimization efficiency is also discussed. The analysis of the optimal solution shows that this method can effectively find out the optimal subdivision scheme. It can provide a basis for formulating scientific subdivision strategies.

Key words: unsinkability, machine learning, particle swarm optimization, reinforcement learning, ship subdivision

摘要: 船舶不沉性是衡量船舶生命力的重要性能,也是优选水密分舱策略的关键指标,但时间成本高仍是制约不沉性寻优实用化的难点。随着机器学习技术应用不断深入,将提供更有效的途径。该研究基于强化学习的粒子群算法求解不沉性分舱优化问题,实现集成机器学习模块和不沉性设计模块的优化系统开发和界面设计,讨论算法中不同参数的设置对寻优能力的影响。通过寻优解的分析,表明该方法能够高效地找到较优的分舱方案,为制定科学的分舱策略等方面提供依据。

关键词: 不沉性, 机器学习, 粒子群, 强化学习, 船舶分舱

CLC Number: