Ship & Boat ›› 2023, Vol. 34 ›› Issue (06): 85-93.DOI: 10.19423/j.cnki.31-1561/u.2023.06.085

Previous Articles     Next Articles

Modeling and Computational Analysis of Fluid-Structure Interaction for Composite Rotor of Underwater Vehicle Thruster

LIU Kai1, LI Ning1,2,*, LI Heng1, LYU Ning1   

  1. 1. Marine Design & Research Institute of China, Shanghai 200011, China;
    2. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China
  • Received:2023-10-16 Revised:2023-11-14 Online:2023-12-25 Published:2023-12-28

水下航行器推进器复合材料转子流固耦合建模与计算分析

刘恺1, 李宁1,2,*, 李恒1, 吕宁1   

  1. 1.中国船舶及海洋工程设计研究院 上海 200011;
    2.喷水推进技术重点实验室 上海 200011
  • 通讯作者: 李 宁(1983-),男,博士,研究员。研究方向:喷水推进泵噪声优化技术。
  • 作者简介:刘 恺(1998-),男,硕士研究生。研究方向:计算流体力学。李 恒(1995-),男,硕士,助理工程师。研究方向:喷水推进技术。吕 宁(1996-),男,硕士,助理工程师。研究方向:喷水推进技术。
  • 基金资助:
    复合材料推进器转子减震降噪机理研究(k10528)

Abstract: This paper focuses on the fluid-structure interaction (FSI) phenomena occurring during the operation of the composite rotor blades of the underwater vehicle thruster. The bidirectional FSI numerical method based on the finite element method (FEM) in ABAQUS and the computational fluid dynamics (CFD) method in STAR CCM+ has been used to calculate and analyze the open water performance, pressure distribution, blade deformation and stress of the composite blades in unsteady flow field under different advance coefficients. In addition, two solutions for negative volume mesh are proposed. The results show that the FSI effect on the composite rotor can cause partial thrust loss, and the vibration frequency of the composite blades in the FSI process mainly concentrates near the first-order blade frequency. When the advance coefficient is lower, it is also observed that the larger the axial load on the blades, the greater the axial deformation, and vice versa. The maximum stress caused by the FSI effect occurs on the root of the pressure side of the blade and the smaller the advance coefficients, the greater the maximum stress. The FSI effect is significant under low advanced coefficients. Both solutions can effectively solve the negative volume mesh problem.

Key words: underwater vehicle, composite material, negative volume, rotor, fluid-structure interaction

摘要: 该文针对水下航行器推进器复合材料转子叶片在工作时发生的流固耦合现象进行研究。基于ABAQUS软件的有限元方法与STAR CCM+软件的计算流体力学的双向流固耦合的数值方法,计算并分析了复合材料叶片在非稳态流场中不同进速系数下的敞水性能、压力分布、桨叶形变和应力大小; 此外,该文还提出2种用于解决动网格负体积的方案。结果表明:流固耦合对复合材料转子的作用会造成其推力的部分损失;复合材料叶片流固耦合过程中的振动频率主要集中在一阶叶频附近;在低进速系数工况下,叶片所受轴向载荷越大,其轴向形变也越大,反之则越小;由流固耦合作用引起的转子最大应力出现在叶片压力面根部,进速系数越小,最大应力越大。流固耦合作用在低进速系数工况下作用明显;2种方案均能有效解决网格负体积问题。

关键词: 水下航行器, 复合材料, 负体积, 转子, 流固耦合

CLC Number: