1. Marine Design & Research Institute of China, Shanghai 200011, China; 2. Key Laboratory of Water Jet Propulsion Technology, Shanghai 200011, China; 3. School of Mechnical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
LI Gangqiang, GENG Hao, XIE Fuqi, XU Changjian, XU Zengbing. Ensemble Deep Transfer Learning Method for Fault Diagnosis of Waterjet Pump Under Variable Working Conditions[J]. Ship & Boat, 2025, 36(02): 103-111.
[1] 田淼, 苏晓明, 陈长征, 等. 基于领域自适应的风力机发电机轴承故障诊断方法研究[J]. 太阳能学报, 2023, 44(11):310-317. [2] 宋向金, 孙文举, 刘国海, 等. 深度子领域自适应网络电机滚动轴承跨工况故障诊断[J]. 电工技术学报, 2024, 39(1):182-193. [3] QIAN Q, QIN Y, LUO J, et al.Deep discriminative transfer learning network for cross-machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2023, 186:109884. [4] GUO L, LEI Y G, XING S B, et al.Deep convolutional transfer learning network:A new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2018, 66(9):7316-7325. [5] XU Z B, LI X J, LIN H, et al.Fault diagnosis of rolling bearing based on modified deep metric learning method[J]. Shock and Vibration, 2021, 1:6635008. [6] SUB B L, SAENKO K.Deep CORAL:correlation alignment for deep domain adaptation[EB/OL].[2024-12-01]. https://arxiv.org/pdf/1607.01719. [7] HINTON G E, OSINDERO S, TEH Y W.A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [8] 谭俊杰, 杨先勇, 徐增丙, 等. 基于无监督迁移成分分析和深度信念网络的轴承故障诊断方法[J]. 武汉科技大学学报, 2019, 42(6):456-462.