Ship & Boat ›› 2025, Vol. 36 ›› Issue (03): 23-33.DOI: 10.19423/j.cnki.31-1561/u.2025.052

Previous Articles     Next Articles

Virtual-Real Simulation Method and System for Multi-USVs Recovery

CHENG Zhiqiang, SHI Yuling, XIE Wenhao, LI Zihao, TANG Guoyuan*   

  1. School of Naval Architecture, Ocean Engineering, Huazhong University of Science, Technology, Wuhan 430074, China
  • Received:2025-03-20 Revised:2025-05-15 Online:2025-06-25 Published:2025-07-02

面向多无人艇回收的虚实联合仿真方法及系统

程志强, 石宇凌, 谢文浩, 李子豪, 唐国元*   

  1. 华中科技大学 船舶与海洋工程学院 武汉 430074
  • 通讯作者: 唐国元(1973-),男,博士,教授/博士生导师。研究方向:舰船与水下航行器运动控制。
  • 作者简介:程志强(1999-),男,硕士研究生。研究方向:水面无人艇与集群运动控制。石宇凌(2005-),男,本科生。研究方向:水面无人艇运动仿真。谢文浩(2001-),男,硕士研究生。研究方向:水面无人艇环境感知。李子豪(2001-),男,硕士研究生。研究方向:水面无人艇运动控制。
  • 基金资助:
    华中科技大学“交叉研究支持计划”(2024JCYJ027)

Abstract: To address the complexities, high costs, and iterative challenges between theoretical research and practical deployment in the recovery process of multi-unmanned surface vehicles (USVs), a virtual-real simulation method and system have been designed based on virtual-real data synchronization mechanisms and high-fidelity rendering via Unity 3D technology. This approach enables simultaneous theoretical research and practical debugging, effectively reducing iteration cycles and lowering costs. The system comprises physical USVs, virtual USVs, and a USV virtual testing platform, and the corresponding method is implemented through this system architecture. Physical USVs generate motion state data through their hardware, software systems, and recovery control strategies, while virtual USVs produce corresponding data through simulations. Through real-time synchronization and interaction of virtual-real data, the constructed USV virtual testing platform facilitates high-fidelity state monitoring, intuitive visualization, and high-confidence validation of recovery strategies. Comprehensive experiments indicate that this method can replace large-scale physical deployments with small-scale physical tests, fully integrating the advantages of real hardware and virtual environments to enable efficient, safe, and low-cost validation of multi-USV recoveries. Furthermore, the designed virtual-real simulation method and system provide a convenient and efficient testing platform for validating the recovery process of larger-scale USV formations and clusters.

Key words: multi-unmanned surface vehicles, recovery, virtual-real, Unity 3D

摘要: 针对多无人艇回收过程复杂、成本昂贵,以及理论研究与实物部署间需反复迭代的问题,该文基于虚实数据同步机制,结合高保真渲染Unity 3D技术,设计了1种虚实联合的仿真方法及系统,实现了理论研究与实物调试同步开展,进而有效减少迭代次数并降低成本。该系统由实体无人艇、虚拟无人艇和无人艇虚拟试验平台组成,对应的方法通过系统架构实施。实体无人艇依靠搭载的软硬件系统及回收控制策略生成运动状态数据,虚拟无人艇则通过仿真生成相应数据,随后由平台对虚实数据同步交互并实时传输,在构建的无人艇虚拟试验平台中,实现高保真状态监控、直观可视化展示及高置信度回收策略验证。综合试验结果表明:该方法及系统能以小规模实体测试替代大规模实物部署,充分整合真实硬件与虚拟环境的优势,实现高效、安全且低成本的多无人艇回收验证。文中所设计的虚实联合仿真方法及系统,也为无人艇更大规模编队及集群的回收过程验证,提供了便捷高效的试验平台。

关键词: 多无人艇, 回收, 虚实联合, Unity 3D

CLC Number: