[1] LI C Y, HAO W S, LEI W P, et al.Vibro-acoustic responses of a hull due to structural and acoustic excitations from a propeller[J]. Ocean Engineering, 2023, 276: 114168. [2] POSA A, BROGLIA R, BALARAS E, et al.The acoustic signature of a propeller-hydrofoil system in the far field[J]. Physics of Fluids, 2023(7): 075101. [3] BENSOW R E.Numerical prediction of cavitation and related nuisances in marine propulsion systems[M]//Cavitation and Bubble Dynamics. Amsterdam: Elsevier, 2021: 111-132. [4] GUO J, CHEN Z G, DAI Y X.Numerical study on self-propulsion of a waterjet propelled trimaran[J]. Ocean Engineering, 2020, 195: 106655. [5] LIU B L, XU X J, PAN D B, et al.Research on shipping energy-saving technology: hydrofoil amphibious vehicle driven by waterjet propulsion[J]. Journal of Cleaner Production, 2023, 382: 135257. [6] JIANG J B, DING J M.The hull-waterjet interaction of a planing trimaran[J]. Ocean Engineering, 2021, 221: 108534. [7] 杨琼方, 伍锐, 郑敏敏, 等. 基于统计学习的船舶泵喷推进系统实船快速性预报新方法[J]. 中国舰船研究, 2022(6): 70-78, 87. [8] GILES W, PEREN T D, AMARATUNGA S, et al.The advanced waterjet: propulsor performance and effect on ship design[C]//The 10th International Naval Engineering Conference, 2010. [9] PEREN T D. CFD and submerged waterjets[J]. Naval Architect, 2010, 7/8: 33-36. [10] 曹玉良, 王永生, 靳栓宝. 浸没式喷水推进泵设计及装船后性能预报[J]. 西安交通大学学报, 2014(5): 96-101. [11] 曹玉良, 王永生, 易文彬, 等. 喷速比对新型泵类推进器推进性能的影响[J]. 哈尔滨工程大学学报, 2015(7): 894-898. [12] 彭云龙, 王永生, 曹玉良, 等. 实尺度浸没式喷水推进泵设计参数选择与性能分析[J]. 船舶力学, 2016 (8): 947-953. [13] 易文彬, 王永生, 刘承江, 等. 浸没式喷水推进自航试验及数值模拟[J]. 船舶力学, 2017(4): 407-412. [14] JIANG J W, HUANG W X.Hydrodynamic design of an advanced submerged propulsion[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019(18): 6367-6382. [15] 张恒, 王仁智, 蔡佑林, 等. 喷射流浸没深度对喷水推进尾迹场的影响分析[J]. 船舶, 2022(3): 20-27. [16] 张恒, 汲国瑞, 蔡佑林, 等. 一种用于浸没式喷水推进装置的分体式流道及其制造方法: CN115042936A[P].2022-09-13. [17] 蔡佑林, 张恒, 陈刚, 等. 面向中低速船的浸没式喷水推进技术[J]. 船舶, 2023(3): 92-96. [18] THIEME C,JÜRGEN S, DELIUS K. Antriebssysteme fürflachgehende hochgeschwindig-keitsfahrzeuge JAFO-technologie[R]. 1994. [19] BOHM M, JÜRGENS D. Linear-Jet: a propulsion system for fast ships[C]//7th International Symposium on Practical Design of Ships and Mobile Units, Hague, Netherlands, 1998. [20] JÜRGENS D, HEINKE H J. Untersuchung tief - getauchter waterjets[C]//The Annual Meeting of STG 100, Hamburg, Germany, 2006. [21] STEDEN M, HUNDEMER J, ABDEL-MAKSOUD M.Optimisation of a linear jet[C]//First International Symposium on Marine Propulsors, Trondheim, Norway, 2009. [22] DONYAVIZADEH N, GHADIMI P.Efficacy analysis of thickness and camber size of cross section of the stator on hydrodynamic parameters in linear jet propulsion system[J]. Mathematical Problems in Engineering, 2020, 2020:1-17. [23] GHADIMI P, DONYAVIZADEH N, TAGHIKHANI P.Utilization of open-source OpenFOAM code to examine the hydrodynamic characteristics of a linear jet propulsion system with or without stator in bollard pull condition[J]. International Journal of Rotating Machinery, 2020, 2020: 1-11. [24] DONYAVIZADEH N, GHADIMI P.Transient analysis of the influence of gap size of the rotor from stator on hydrodynamic performance of the linear jet propulsion system[J]. Ships and Offshore Structures, 2022(5): 1087-1098. [25] DONYAVIZADEH N, GHADIMI P.Numerical assessment of the effect of length, angle of attack, and type of ducts on hydrodynamic parameters of a linear-jet propulsion system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023(16): 3573-3586. [26] 孙小帅, 马骋, 钱正芳, 等. 水面泵喷推进自航因子数值与试验研究[J]. 船舶力学, 2022(5): 609-616. [27] JIANG J B, DING J M, LYU N, et al.Control volume determination for submerged waterjet system in self-propulsion[J]. Ocean Engineering, 2022, 265: 112594. |