[1] 陈超,曾向明.港口国监督制度凸现的问题及其发展趋势[J].中国航海,2006(4):78-81. [2] HÄNNINEN M;KUJALA P. Bayesian network modeling of port state control inspection findings and ship accident involvement[J]. Expert Systems with Applications,2014,41(4):1632-1646. [3] YANG Z S,YANG Z L,YIN J B.Realising advanced risk-based port state control inspection using data-driven Bayesian networks[J]. Transportation Research Part A:Policy and Practice,2018,110(4):38-56. [4] FAN L,ZHANG Z,YIN J,et al.The efficiency improvement of port state control based on ship accident Bayesian networks[J]. Journal of Risk and Reliability,2019,233(1):71-83. [5] CARIOU P,MEJIA M Q,WOLFF F C.Evidence on target factors used for port state control inspections[J]. Marine Policy,2009,33(5):847-859. [6] 陈晶,金永兴,陈锦标,等.基于辨识度关联的船舶滞留规律挖掘与表达[J].交通运输系统工程与信息,2014,14(1):102-108. [7] 顾洵瑜,胡甚平,吴建军,等.基于FP-tree算法的船舶滞留原因关联性分析[J].上海海事大学学报,2015,36(2):60-64. [8] 孙忠华. 基于智能优化算法的港口国监督选船模型研究[D].大连:大连海事大学,2013. [9] 傅俊杰. 港口国监督数据驱动的船舶缺陷属性与滞留风险研究[D].上海:上海海事大学,2021. [10] AGRAWAL R,SRIKANT R.Fast a lgorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large DataBases.Santiago de Chile:Morgan Kaufnmn Publisher,1994:487-499. [11] 刘以安,羊斌.关联规则挖掘中对Apriori算法的一种改进研究[J].计算机应用,2007(2):418-420. [12] 姜盛彬. 数据挖掘中基于兴趣度的关联规则研究[D].长沙:湖南师范大学,2015. [13] HAHSLER M,HORNIK K.New probabilistic interest measures for association rules[J].Intelligent Data Analysis,2007(11):437-455. [14] MANIMARAN J,VELMURUGAN T.Analysing the quality of association rules by computing an interestingness measures[J]. Indian Journal of Science and Technology,2015,8(15):1-12. [15] BALCAZAR J L.Formal and computational properties of the confidence boost of association rules[J].ACM Transactions on Knowledge Discovery from Data (TKDD),2013,7(4):1-41. |