1. Marine Design & Research Institute of China, Shanghai 200011, China; 2. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China
LIU Kai, LI Ning, LI Heng, LYU Ning. Modeling and Computational Analysis of Fluid-Structure Interaction for Composite Rotor of Underwater Vehicle Thruster[J]. Ship & Boat, 2023, 34(06): 85-93.
[1] YOUNG Y L.Time-dependent hydroelastic analysis of cavitating propulsors[J]. Journal of fluids and structures, 2007(2):269-295. [2] YOUNG Y L.Fluid-structure interaction analysis of flexible composite marine propellers[J]. Journal of fluids and structures, 2008(6):799-818. [3] YOUNG Y L, SAVANDER B R.Transient hydroelastic analysis of surface-piercing propellers[C]//Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, Michigan, 2009. [4] LIN H J, LIN J J.Effect of stacking sequence on the hydroelastic behavior of composite propeller blades[C]//Eleventh International Conference on Composite Materials, Australian Composite Structures Society. Gold Coast:[s.n.], 1997. [5] 黄政, 熊鹰, 阳光.基于ANSYS ACP的复合材料螺旋桨 流固耦合计算方法[J].计算力学报, 2017(4):501-506. [6] 李雪琴, 陈科, 刘刚. 基于ANSYS的复合材料叶片有限元建模与分析[J]. 复合材料学报, 2017(4):591-598. [7] 曾志波, 姚志崇, 王玮波, 等.基于流固耦合相互作用的复合材料螺旋桨性能研究[J]. 船舶力学, 2011(11):1224-1233. [8] 刘政, 贺涛, 张宁, 等.复合材料螺旋桨尾流场的数值模拟[J]. 船舶工程, 2015(11):26-30. [9] 洪毅, 赫晓东. 复合材料船用螺旋桨设计与CFD/FEM计算[J]. 哈尔滨工业大学学报, 2010(3):404-408. [10] 黄胜, 白雪夫, 孙祥杰, 等. 基于流固耦合的螺旋桨水动力性能数值仿真[J]. 船舶, 2015(1):25-30. [11] 张帅, 朱锡, 侯海量. 船舶螺旋桨流固耦合稳态求解算法[J]. 哈尔滨工程大学学报, 2012(5):615-621.