船舶 ›› 2024, Vol. 35 ›› Issue (01): 70-83.DOI: 10.19423/j.cnki.31-1561/u.2024.01.007

• 极地专栏 • 上一篇    下一篇

基于DEM-SPH流固耦合的冰区船舶快速性预报

吴捷1, 刘璐2,*, 田于逵3,4, 季顺迎1   

  1. 1.大连理工大学 工业装备结构分析优化与CAE软件全国重点实验室 大连 116024;
    2.大连理工大学 船舶工程学院 大连 116024;
    3.中国船舶科学研究中心 无锡 214082;
    4.深海技术科学太湖实验室 无锡 214082
  • 收稿日期:2023-11-17 修回日期:2024-01-03 出版日期:2024-02-25 发布日期:2024-03-01
  • 通讯作者: 刘璐(1990-),男,博士,副教授/博士生导师。研究方向:离散元方法及工程应用。
  • 作者简介:吴捷(1996-),男,博士研究生。研究方向:冰水耦合数值模型。田于逵(1968-),男,硕士,研究员/博士生导师。研究方向:极地船舶与海洋工程。季顺迎(1972-),男,博士,教授/博士生导师。研究方向:极地船舶与海洋工程。
  • 基金资助:
    国家自然科学基金资助项目(42176241, U20A20327, 52192693, 52192690, 12102083); 工信部极地船舶专项(CBG2N21-2-3)

Power/Speed Prediction of Ice-Going Ships Based on DEM-SPH Fluid-Structure Interaction Model

WU Jie1, LIU Lu2,*, TIAN Yukui3,4, JI Shunying1   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China;
    3. China Ship Scientific Research Center, Wuxi 214082, China;
    4. Taihu Laboratory of Deepsea Technology Science, Wuxi 214082, China
  • Received:2023-11-17 Revised:2024-01-03 Online:2024-02-25 Published:2024-03-01

摘要: 船舶在冰区海域中航行会受到冰水环境阻力的影响,是冰区船舶快速性研究中的重要影响因素。为合理分析冰区船舶的快速性能,该文采用基于离散元(discrete element method, DEM)和光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)方法的流固耦合模型模拟船舶冰区航行过程,获得不同航速下的船舶阻力和推进力,进一步计算出螺旋桨的推力、扭矩以及定速航行所需的螺旋桨转速等参数。为研究船体结构、海冰与海水之间的流固耦合作用,文中通过SPH粒子与固定粒子边界相对运动的拟合项直接计算固体与流体之间的相互作用力,建立船体结构、海冰与海水耦合的DEM-SPH模型,并基于该模型分别对船舶在冰区的航行阻力和推进力进行模拟,通过拟合的方式匹配航行阻力和推进力,并考虑尾部流场导致的船体阻力增额,从而预报船舶在特定航速下实现自航所需的螺旋桨转速。此外,文中还模拟了DTMB 5415船模在浮冰区和层冰区中航行的阻力和不同螺旋桨转速下的推力,对船模在不同工况下实现特定航速航行所需的螺旋桨转速进行了预报。计算结果表明:DEM-SPH耦合模型对船-冰、桨-冰作用中的流固耦合过程模拟效果出色,可完整描述船体及尾部伴流场对海冰的拖曳作用;通过文中所述阻力-推力模拟算例及强制力的拟合分析,所形成的基于数值模拟方法的船舶自航下螺旋桨转速预报,可为进一步的试验验证和工程应用推广奠定基础。

关键词: 冰区船舶, DEM-SPH流固耦合, 离散元方法, 船体阻力, 螺旋桨推力

Abstract: The navigation of ships in sea ice is affected by the resistance of the ice-water environment, which is an important factor in the research of the power/speed of ice ships. The ship sailing in ice areas has been simulated by a fluid-structure interaction model based on the discrete element method (DEM) and smoothed particle hydrodynamics (SPH) method, to reasonably analyze the power/speed performance of ice ships. It obtains the resistance of the ship at different speeds, and the thrust and torque of the propeller, as well as the speed of revolution required for navigation at constant speed. A DEM-SPH model for the coupling of the hull structure, sea ice and seawater is established by directly calculating the interaction force between the structure and the fluid through the fitting of the relative motion between the SPH particles and the fixed particle boundaries, in order to study the fluid structure interaction between the hull structure, sea ice and seawater. Then the DEM-SPH coupling model is used to simulate the resistance and propulsion of the ships in ice regions. The resistance and thrust of the ships are matched through the fitting method with consideration of the influence of the resistance increment caused by the wake field, to predict the speed of revolution required for the self-propelled ship at a specific speed. The resistances of the DTMB 5415 ship model in ice floes and level ice and the propeller thrusts at different speeds of revolution are also simulated to predict the speed of revolution required for the ship sailing at specific speeds under different operation conditions. The results show that the fluid-structure interaction between the ship-ice and propeller-ice can be well simulated by the DEM-SPH coupling model, fully describing the drag effect of the ship hull and the wake field on the sea ice. A numerical simulation-based prediction of the speed of revolution for the self-propelled ship is performed through the simulations of resistance and thrust, and the fitting analysis of the forced force. It can provide foundation for further experimental verification and engineering applications.

Key words: ice-going ships, DEM-SPH fluid-structure interaction model, discrete element method, ship resistance, propeller thrust

中图分类号: