[1] 欧阳晓波. 浅析我国海运货物安全[J].商业经济,2013(9):44-45. [2] 廖振方,陈德淑,邓晓刚.脉冲空化射流清洗船壳[J].清洗世界,2003(12):21-23. [3] 于靖博,杨君德,尚振国,等. 新型反冲式水下船体表面清洗刷设计方案研究[J]. 船舶,2013,24(2): 24-26. [4] ER M J,CHEN J,ZHANG Y,et al.Research challenges,recent advances,and popular datasets in deep learning-based underwater marine object detection: a review[J]. Sensors,2023,23(4): 1990. [5] LEE Y,KIM J,WILLETTE J,et al.Mpvit: multi-path vision transformer for dense prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022,7287-7296. [6] REN S,ZHOU D,HE S,et al.Shunted self-attention via multi-scale token aggregation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022: 10853-10862. [7] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017: 2117-2125. [8] YANG J,FU X,HU Y,et al.PanNet: a deep network architecture for pan-sharpening[C]//Proceedings of the IEEE International Conference on Computer Vision,2017: 5449-5457. [9] ZHAO Z,LIU Y,SUN X,et al.Composited fishNet: fish detection and species recognition from low-quality underwater videos[J]. IEEE Transactions on Image Processing,2021,30: 4719-4734. [10] SHI W,CABALLERO J,HUSZÁR F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016: 1874-1883. [11] PENG F,MIAO Z,LI F,et al.S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images[J]. Expert Systems with Applications,2021,182: 115306. [12] SHARMA A,KUMAR V,LONGCHAMPS L.Comparative performance of YOLOv8,YOLOv9,YOLOv10,YOLOv11 and Faster R-CNN models for detection of multiple weed species[J].Smart Agricultural Technology,2024,9:100648. [13] TAN M,PANG R,LE Q V.Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020: 10781-10790. [14] WANG W,DAI J,CHEN Z,et al.Internimage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2023: 14408-14419. [15] 清研海试1号科考船完成首次科考任务[J].船舶与配套,2019(5):1. [16] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008. [17] JIAO J,TANG Y M,LIN K Y,et al.Dilateformer: multi-scale dilated transformer for visual recognition[J]. IEEE Transactions on Multimedia,2023,25: 8906-8919. [18] ZHU X,HU H,LIN S,et al.Deformable convnets v2: more deformable,better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019: 9308-9316. [19] LIU W,ANGUELOV D,ERHAN D,et al.SSD: single shot multibox detector[C]//Computer Vision-ECCV 2016: 14th European Conference,2016: 21-37. [20] REN S,HE K,GIRSHICK R,et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6): 1137-1149. [21] CAI Z, VASCONCELOS N.Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5):1483-1498. [22] TAN M, LE Q.Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning,2019:6105-6114. [23] DUAN K, BAI S, XIE L, et al.Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6569-6578. [24] LIU C W, WANG Z H, WANG S J, et al.A new dataset, Poisson GAN and AquaNet for underwater object grabbing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(5):2831-2844. |