[1] 王深, 吕连宏, 张保留, 等.基于多目标模型的中国低成本碳达峰、碳中和路径[J].环境科学研究, 2021(9): 2044-2055. [2] 徐彬, 薛帅, 高厚磊, 等. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022(2):227-235. [3] 房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022(2):175-185. [4] 冷淇程. 海上风机结构损伤识别分析与交互系统开发[D]. 大连: 大连海事大学, 2022. [5] DONG H, DING Z H,ZHANG S H.Deep Reinforcement Learning[M]. Singapore: Springer Singapore, 2020. [6] ALPAYDIN E.Introduction to machine learning[M]. 3rd ed. Cambridge: MIT Press, 2020. [7] SIDDIQUE A B, OYMAK S, HRISTIDIS V.Unsupervised paraphrasing via deep reinforcement learning[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1800-1809. [8] GHADIRZADEH A, CHEN X, YIN W J, et al.Human-centered collaborative robots with deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2021(2):566-571. [9] THAREWAL S, ASHFAQUE M W, BANU S S, et al.Intrusion detection system for industrial internet of things based on deep reinforcement learning[J]. Wireless Communications and Mobile Computing, 2022, 2022:1-8. [10] HOU Y L, WANG Q W.Big data and artificial intelligence application in energy field: a bibliometric analysis[J]. Environmental Science and Pollution Research, 2023(6):13960-13973. [11] MA Y.Machine learning in ocean applications: wave prediction for advanced controls of renewable energy and modeling nonlinear viscous hydrodynamics[D]. Cambridge: Massachusetts Institute of Technology, 2020. [12] STETCO A, DINMOHAMMADI F, ZHAO X Y, et al.Machine learning methods for wind turbine condition monitoring: a review[J]. Renewable Energy, 2019, 133: 620-635. [13] KHAN N M, KHAN G M, MATTHEWS P.AI based real-time signal reconstruction for wind farm with SCADA sensor failure[C]// 16th International Conference on Artificial Intelligence Applications and Innovations, Greece. Berlin: Springer, 2020: 207-218. [14] LI X, ZHANG W.Physics-informed deep learning model in wind turbine response prediction[J]. Renewable Energy, 2022, 185: 932-944. [15] ATEŞ K T.Estimation of short-term power of wind turbines using artificial neural network (ANN) and swarm intelligence[J]. Sustainability, 2023(18): 13572. [16] FARRAR N O, ALI M H, DASGUPTA D.Artificial intelligence and machine learning in grid connected wind turbine control systems:a comprehensive review[J]. Energies, 2023 (3):1530. [17] VIVES J, PALACI J, HEART J.Framework for bidirectional knowledge-based maintenance of wind turbines[J]. Computational Intelligence and Neuroscience, 2022, 2022:1-6. [18] JIANG X, DAY S, CLELLAND D, et al.Analysis and real-time prediction of the full-scale thrust for floating wind turbine based on artificial intelligence[J]. Ocean Engineering, 2019, 175: 207-216. [19] PAN L, WANG X D.Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control[J]. Renewable Energy, 2020, 159: 221-237. [20] SIERRA-GARCIA J E, SANTOS M. Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control[J]. Neural Computing and Applications, 2022 (13): 10503-10517. [21] WANG Z M, QIAO D S, TANG G Q, et al.An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system[J]. Ocean Engineering, 2022, 261: 112105. [22] SIMPSON T, DERVILIS N, COUTURIER P, et al.Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme[J]. Frontiers in Energy Research, 2023, 11: 1128201. [23] 张德庆, 王超, 杜君峰. 基于人工神经网络算法的深海浮式系统动力响应预报方法[J]. 中国造船, 2021(1): 123-132. [24] WANG Z M, QIAO D S, YAN J, et al.A new approach to predict dynamic mooring tension using LSTM neural network based on responses of floating structure[J]. Ocean Engineering, 2022, 249: 110905. [25] QIAO D S, LI P, MA G, et al.Realtime prediction of dynamic mooring lines responses with LSTM neural network model[J]. Ocean Engineering, 2021, 219: 108368. [26] MAO Y X, WANG T Q, DUAN M L.A DNN-based approach to predict dynamic mooring tensions for semi-submersible platform under a mooring line failure condition[J]. Ocean Engineering, 2022, 266: 112767. [27] SHI W, HU L H, LIN Z B, et al.Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network[J]. Ocean Engineering, 2023, 280: 114558. [28] KIM J H, PARK R J, KANG S, et al.A design of the real-time simulation for wind turbine modeling with machine learning[J]. Journal of Electrical Engineering & Technology, 2023(4): 3277-3285. [29] SIMANI S, CASTALDI P.Intelligent fault diagnosis techniques applied to an offshore wind turbine system[J]. Applied Sciences, 2019(4): 783. [30] BAGLEE D, KNOWLES M, KINNUNEN S K, et al.A proposed maintenance strategy for a wind turbine gearbox using condition monitoring techniques[J]. International Journal of Process Management and Benchmarking, 2016(3): 386. [31] WU F T, WANG C C, LIU J H, et al.Construction of wind turbine bearing vibration monitoring and performance assessment system[J]. Journal of Signal and Information Processing, 2013(4): 430-438. [32] CHATTERJEE J, DETHLEFS N.Scientometric review of artificial intelligence for operations & maintenance of wind turbines: the past, present and future[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 111051. [33] PANDIT R, ASTOLFI D, HONG J R, et al.SCADA data for wind turbine data-driven condition/performance monitoring: a review on state-of-art, challenges and future trends[J]. Wind Engineering, 2023(2): 422-441. [34] STETCO A, DINMOHAMMADI F, ZHAO X Y, et al.Machine learning methods for wind turbine condition monitoring: a review[J]. Renewable Energy, 2019, 133: 620-635. [35] BURTON H, BOUILLARD J S, KEMP N.Memristor-based LSTM neuromorphic circuits for offshore wind turbine blade fault detection[C]//2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1-5. [36] ZOU X Q, XU S, CHEN X M, et al.Breaking the Von Neumann bottleneck: architecture-level processing-in-memory technology[J]. Science China Information Sciences, 2021(6): 1-10. [37] CHOE D E, KIM H C, KIM M H.Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades[J]. Renewable Energy, 2021, 174: 218-235. [38] ATTALLAH O, IBRAHIM R A, ZAKZOUK N E.CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection[J]. Renewable Energy, 2023, 203: 870-880. [39] DIBAJ A, GAO Z, NEJAD A R.Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements[J]. Renewable Energy, 2023, 203: 161-176. [40] YIN A J, YAN Y H, ZHANG Z Y, et al.Fault diagnosis of wind turbine gearbox based on the optimized LSTM neural network with cosine loss[J]. Sensors, 2020(8): 2339. [41] ZHU Y C, ZHU C C, TAN J J, et al.Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis[J]. Renewable Energy, 2022, 181: 1167-1176. [42] 王春, 陆义超, 邢占清, 等. 基于神经网络算法的海上风机结构状态监测研究[J]. 中国水利水电科学研究院学报, 2015(5): 344-351. [43] QIU B B, LU Y, SUN L P, et al.Research on the damage prediction method of offshore wind turbine tower structure based on improved neural network[J]. Measurement, 2020, 151: 107141. [44] GUO J M, WU J L, GUO J H, et al.A damage identification approach for offshore jacket platforms using partial modal results and artificial neural networks[J]. Applied Sciences, 2018, 8(11): 2173. [45] PARK G, YOU D, OH K Y, et al.Natural frequency degradation prediction for offshore wind turbine structures[J]. Machines, 2022, 10(5): 356. [46] VIDAL Y, AQUINO G, POZO F, et al.Structural health monitoring for jacket-type offshore wind turbines: experimental proof of concept[J]. Sensors, 2020(7): 1835. [47] XU Z F, BASHIR M, YANG Y, et al.Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism[J]. Renewable Energy, 2022, 199: 21-34. [48] MAO Y X, ZHENG M Z, WANG T Q, et al.A new mooring failure detection approach based on hybrid LSTM-SVM model for semi-submersible platform[J]. Ocean Engineering, 2023, 275: 114161. [49] TUERXUN W, XU C, GUO H Y, et al.Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm[J]. IEEE Access, 2021, 9: 69307-69315. [50] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020(1): 22-34. [51] LI C B, CHOUNG J.Fatigue damage analysis for a floating offshore wind turbine mooring line using the artificial neural network approach[J]. Ships and Offshore Structures, 2017(Sup.1): 288-295. [52] HAMEED Z, WANG K S.Development of optimal maintenance strategies for offshore wind turbine by using artificial neural network[J]. Wind Engineering, 2012(3): 353-364. [53] LU Y, SUN L P, ZHANG X Y, et al.Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach[J]. Applied Ocean Research, 2018, 74: 69-79. [54] YAN J, NUERTAYI A, YAN Y M, et al.Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine[J]. Renewable Energy, 2023, 215: 118958. [55] CHEN P, SONG L, CHEN J H, et al.Simulation annealing diagnosis algorithm method for optimized forecast of the dynamic response of floating offshore wind turbines[J]. Journal of Hydrodynamics, 2021(2): 216-225. [56] CHEN P, JIA C J, NG C, et al.Application of SADA method on full-scale measurement data for dynamic responses prediction of Hywind floating wind turbines[J]. Ocean Engineering, 2021, 239: 109814. [57] CHEN P, HU Z Q.A study on key disciplinary parameters of artificial intelligent-based analysis method for dynamic response prediction of floating offshore wind turbines[J]. Journal of Offshore Mechanics and Arctic Engineering, 2023(1): 010906. [58] ZHANG Y F, YANG X Y, LIU S Q.Data-driven predictive control for floating offshore wind turbines based on deep learning and multi-objective optimization[J]. Ocean Engineering, 2022, 266: 112820. |