[1] 黄焱, 孙剑桥, 田育丰. 极地船舶冰区航行性能的试验预报技术发展现状[J]. 船舶, 2023, 34(1): 87-97. [2] CARRICA P M, CASTRO A M, STERN F.Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of Marine Science and Technology, 2010, 15(4): 316-330. [3] XIE C, ZHOU L, DING S, et al.Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel[J]. Ocean Engineering, 2023, 269: 113424. [4] YANG B, SUN Z, ZHANG G, et al.Numerical estimation of ship resistance in broken ice and investigation on the effect of floe geometry[J]. Marine Structures, 2021, 75: 102867. [5] YANG D, LIU L, JI S.Numerical analysis of interaction between sea ice and propeller based on coupled DEM-FEM model[J]. Ocean Engineering, 2023, 268: 113469. [6] LU W, LUBBAD R, LØSET S. Simulating ice-sloping structure interactions with the cohesive element method[J]. Journal of Offshore Mechanics & Arctic Engineering, 2014, 136(3): 16. [7] PRADANA M R, QIAN X.Bridging local parameters with global mechanical properties in bonded discrete elements for ice load prediction on conical structures[J]. Cold Regions Science and Technology, 2020, 173: 102960. [8] ZHANG Y, ZHANG G, TAO L, et al.Study and discussion on computational efficiency of ice-structure interaction by peridynamic[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1154. [9] ZHAO X, SHEN H H, CHENG S.Modeling ocean wave propagation under sea ice covers[J]. Acta Mechanica Sinica, 2015, 31(1): 1-15. [10] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰荷载的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720-1739. [11] 季顺迎, 田于逵. 基于多介质、多尺度离散元方法的冰载荷数值冰水池[J]. 力学学报, 2021, 53(9): 2427-2453. [12] JI S, YANG D.Ice loads and ice-induced vibrations of offshore wind turbine based on coupled DEM-FEM simulations[J]. Ocean Engineering, 2022, 243: 110197. [13] HUANG L F, REN K, LI M H, et al.Fluid-structure interaction of a large ice sheet in waves[J]. Ocean Engineering, 2019, 182: 102-111. [14] LUO W Z, JIANG D P, WU T C, et al.Numerical simulation of an ice-strengthened bulk carrier in brash ice channel[J]. Ocean Engineering, 2020, 196: 106830. [15] 周光正, 葛蔚, 李静海. 传统光滑粒子动力学方法的适用性分析[J]. 科学通报, 2013, 58(15): 1414-1421. [16] 王志超, 李大鸣. 基于SPH-DEM流-固耦合算法的滑坡涌浪模拟[J]. 岩土力学, 2017, 38(4): 1226-1232. [17] TANG Y, JIANG Q, ZHOU C.A Lagrangian-based SPH-DEM model for fluid-solid interaction with free surface flow in two dimensions[J]. Applied Mathematical Modelling, 2018, 62: 436-460. [18] ANTUONO M, COLAGROSSI A, MARRONEA S, et al.Propagation of gravity waves through an SPH scheme with numerical diffusive terms[J]. Computer Physics Communications, 2011, 182: 866-877. [19] SUN X, SAKAI M, YAMADA Y.Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method[J]. Journal of Computational Physics, 2013, 248(5): 147-176. [20] EITZLMAYR A, KOSCHER G, KHINAST J.A novel method for modeling of complex wall geometries in smoothed particle hydrodynamics[J]. Computer Physics Communications, 2014, 185(10): 2436-2448. [21] 刘璐, 曹晶, 张志刚, 等. 冰区航行中船体结构冰压力分布特性的离散元分析[J]. 船舶力学, 2021, 25(4): 453-461. [22] POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329-1364. [23] LONG X, JI S Y, WANG Y F.Validation of micro-parameters in discrete element modeling of sea ice failure process[J]. Particulate Science and Technology, 2019, 37(5): 546-555. [24] LONG X, LIU S W, JI S Y.Discrete element modelling of relationship between ice breaking length and ice load on conical structure[J]. Ocean Engineering, 2020, 201: 107152. [25] NOMERITAE D E, GRIMALDI S, et al.Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes[J]. Advances in Water Resources, 2016, 97: 156-167. [26] MORIKAWA D, SENADHEERA H, ASAI M.Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations[J]. Computational Particle Mechanics, 2021, 8(3): 493-510. [27] LIU G R, LIU M B.Smoothed particle hydrodynamics: a meshfree particle method[M]. Singapore: World Scientific Publishing, 2003. [28] CLEARY P W, MONAGHAN J J.Conduction modelling using smoothed particle hydrodynamics[J]. Journal of Computational Physics, 1999, 148(1): 227-264. [29] SHAO S, LO E Y.Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface[J]. Advances in Water Resources, 2003, 26(7): 787-800. [30] RAFIEE A, THIAGARAJAN K P.An SPH projection method for simulating fluid-hypoelastic structure interaction[J]. Computer Methods in Applied Mechanics & Engineering, 2009, 198: 2785-2795. [31] NI X, SHENG J, FENG W.Simulation of free-surface flow using the smoothed particle hydrodynamics (SPH) method with radiation open boundary conditions[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(11): 2435-2460. [32] VERBRUGGHE T, DOMÍNGUEZ J M, ALTOMARE C, et al. Non-linear wave generation and absorption using open boundaries within DualSPHysics[J]. Computer Physics Communications, 2019, 240: 46-59. [33] HOLMES D W, PIVONKA P.Novel pressure inlet and outlet boundary conditions for smoothed particle hydrodynamics, applied to real problems in porous media flow[J]. Journal of Computational Physics, 2021, 429: 110029. [34] EITZLMAYR A, KHINAST J.Co-rotating twin-screw extruders: detailed analysis of conveying elements based on smoothed particle hydrodynamics. part 1: hydrodynamics[J]. Chemical Engineering Science, 2015, 134: 861-879. [35] LIU L, WU J, JI S Y.DEM-SPH coupling method for the interaction between irregularly shaped granular materials and fluids[J]. Powder Technology, 2022, 400: 117249. |