1. Forth Military Representative Office of the Naval Equipment Department in Shanghai, Shanghai 201108, China; 2. Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China
[1] 黄伟, 常俊, 孙智滨. 基于MEA-BP神经网络的压气机特性曲线预测[J]. 重庆理工大学学报(自然科学), 2019(2):67-74. [2] 涂环, 陈辉. 基于Kriging算法的压气机特性建模[J].内燃机学报, 2014(4):377-383. [3] 沈浩生, 张均东, 杨柏丞, 等. 船用大型压气机质量流量分区域建模方法[J]. 交通运输工程学报, 2020(6):180-196. [4] 王海燕, 赫伟建, 张旭升, 等. 涡轮增压器热力学模型与柴油机动态仿真[J]. 内燃机工程, 2017(2): 128-134. [5] SONG J J, YAN X G, LI M L, et al.Application of grey system model and particle swarm optimization on CNC machine thermal error modeling[C]// International Conference on Measuring Technology & Mechatronics Automation, Changsha, China, 2010. [6] MA C, ZHAO L, MEI X, et al.Thermal error modeling of machine tool spindle based on particle swarm optimization and neural network[J]. Journal of Shanghai Jiaotong University, 2016(5): 686-695. [7] WANG J, QIN B, LIU Y L, et al.Thermal error prediction of numerical control machine based on improved particle swarm optimized back propagation neural network[C]// The 2015 11th International Conference on Natural Computation, Zhangjiajie, China, 2015. [8] 冯雁敏, 王湛, 张雪源, 等. 基于混沌粒子群算法的水轮机调速系统参数辨识及建模试验[J]. 长江科学院院报, 2016(8):138-143, 150. [9] 刘昌玉, 李崇威, 洪旭钢, 等. 基于改进粒子群算法的水轮机调速系统建模[J].水电能源科学, 2011(12):124-127.