[1] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509:23-62. [2] LI T, ZHANG J Y, ZHANG W H.Nonlinear characteristics of vortex-induced vibration at low Reynolds number[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(7): 2753-2771. [3] GSELL S, BOURGUET R, BRAZA M.Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re=3900[J]. Journal of Fluids and Structures, 2016, 67:156-172. [4] KANG Z, NI W C, SUN L P.A numerical investigation on capturing the maximum transverse amplitude in vortex induced vibration for low mass ratio[J]. Marine Structures, 2017, 52:94-107. [5] GAO Y, ZONG Z, ZOU L, et al.Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses[J]. Marine Structures, 2018, 57:165-179. [6] HAN X X, LIN W, WANG D J, et al.Numerical simulation of super upper branch of a cylindrical structure with a low mass ratio[J]. Ocean Engineering, 2018, 168:108-120. [7] GOVARDHAN R N, WILLIAMSON C H K. Defining the ‘modified Griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[J]. Journal of Fluid Mechanics, 2006, 561: 147-180.