Ship & Boat ›› 2025, Vol. 36 ›› Issue (04): 75-88.DOI: 10.19423/j.cnki.31-1561/u.2024.144

Previous Articles     Next Articles

Design and Construction of a Shipboard Paleomagnetic Laboratory in Low Magnetic Field Environment

LI Xiaohu, FAN Bin, WANG Yongshan, MA Ke   

  1. CSSC Huangpu Wenchong Shipbuilding Company Limited, Guangzhou 510715, China
  • Received:2024-09-10 Revised:2024-12-18 Online:2025-08-25 Published:2025-09-04

船载低磁环境古地磁实验室设计和建造

李小虎, 樊斌, 王永珊, 马可   

  1. 中船黄埔文冲船舶有限公司 广州 510715
  • 作者简介:李小虎(1986-),男,本科,高级工程师。研究方向:船舶舾装设计、船载实验室建设等研究。樊 斌(1966-),男,本科,正高级工程师。研究方向:船舶与海洋工程装备系统集成、设计及建造工艺。王永珊(1974-),男,本科,正高级工程师。研究方向:海洋工程装备、船舶电气设计等研究。马 可(1976-),男,本科,正高级工程师。研究方向:船舶建造项目管理。
  • 基金资助:
    2023年广东省海洋经济发展(海洋六大产业)专项资金项目(粤自然资合[2023]31号)

Abstract: The design ideas, key technologies and construction process of a shipborne paleomagnetic laboratory in low magnetic field environment are elaborated based on the construction of a paleomagnetic laboratory for an ocean drilling vessel. The article begins with a brief introduction to the basic principles and research significance of paleomagnetism, and the current technical development status of shipboard paleomagnetic laboratories. The overall design scheme and construction process of the shipboard paleomagnetic laboratory are then elaborated in detail, including the simulation design of the paleomagnetic laboratory, the optimization of the laboratory layout, the innovative structural design, the magnetic shielding technology, the vibration and noise reduction control, and the key construction technology. The key performance indicators, such as the average residual magnetic field in the laboratory and the overall shielding effect, meet the requirements for shipboard paleomagnetic laboratories through the optimization of structure, equipment and material selection, and the innovative application of technologies of hole optimization simulation design, flexible support design, and special construction technology for shielding layers. Finally, a scientifically reasonable debugging and measurement scheme is introduced for detecting the magnetic shielding effectiveness of the shipboard paleomagnetic laboratory, which fully verifies the feasibility and effectiveness of the design and construction of the low-magnetic environment paleomagnetic laboratory.

Key words: shipborne paleomagnetic laboratory, magnetic shielding technology, low-magnetic environment, flexible vibration-isolation structure, ocean drilling vessel, shielding effectiveness test

摘要: 该文结合某大洋钻探船古地磁实验室建设项目,详细阐述了1种低磁环境船载古地磁实验室的设计思路、关键技术和建造过程。首先,简要介绍了古地磁学基本原理、研究意义和当前船载古地磁实验室的技术发展现状;随后,详细阐述了船载古地磁实验室的总体设计方案和建造过程(包括实验室仿真设计、布局优化、结构设计创新、磁屏蔽技术、减振降噪控制、关键施工工艺等内容),通过结构、设备及材料选型优化,并创新性应用孔洞优化仿真设计、柔性支撑设计、屏蔽层特殊施工工艺等技术,使实验室内部平均剩磁和整体屏蔽效果等关键性能指标能够达到预期目标;最后,还介绍了1种针对船载古地磁实验室磁屏蔽效能检测和调试的方案,进而充分验证了这种低磁环境古地磁实验室设计和建造方案的可行性与有效性。

关键词: 船载古地磁实验室, 磁屏蔽技术, 低磁环境, 柔性减振结构, 大洋钻探船, 屏蔽效能检测

CLC Number: