[1] IMO. MSC.1/Circ.1627-interim guidelines on the second generation intact stability criteria[S]. London:IMO, 2020. [2] 刘亚柳. 随浪中船舶骑浪横甩非线性运动特性及骑浪概率研究 [D].天津:天津大学,2019. [3] 王丽元. 船舶纵浪航行非线性随机运动响应预报方法研究 [D].天津:天津大学, 2019. [4] 张海春,于立伟,鲁江, 等.船舶骑浪横甩的非线性动力学特性研究[J].中国造船, 2021, 62(4):1-14. [5] 唐友刚,王丽元,刘峥, 等.船舶非线性动力学分析方法及工程应用[J].船舶, 2022, 33(4):1-14. [6] BELENKY V, WEEMS K, SPYROU K J.On probability of surf-riding in irregular seas with a split-time formulation[J]. Ocean Engineering, 2016, 120: 264-273. [7] TIGKAS I G, SPYROU K J.Hybrid surging and surf-riding motions of a ship in steep bi-chromatic following seas[J]. Ocean Engineering, 2023, 269: 113522. [8] UMEDA N, USADA S, MIZUMOTO K, et al.Broaching probability for a ship in irregular stern-quartering waves: theoretical prediction and experimental validation[J]. Journal of Marine Science and Technology, 2016, 21: 23-37. [9] 于立伟. 统一模型下船舶纵浪中的非线性横向失稳运动的预报与规避研究 [D]. 上海:上海交通大学, 2016. [10] 王廷昊. 骑浪横甩数值预报方法及其非线性动力学特性研究 [D]. 上海:上海交通大学, 2019. [11] 王安琪,马宁,顾解忡, 等.船舶不规则波中增速骑浪的数值计算及统计分析[J].舰船科学技术, 2022, 44(3):31-37. [12] 储纪龙,顾民,鲁江, 等.内倾船骑浪概率评估方法和安全边界研究[J].中国造船, 2022, 63(6):1-13. [13] 储纪龙,鲁江,顾民.非常规内倾船型骑浪数值预报方法研究[J].船舶力学, 2022, 26(8):1150-1159. [14] 张宝吉,王吴锐.在随浪、尾斜浪下ONR舰船骑浪横甩直接数值模拟[J].上海海事大学学报, 2022, 43(3):97-101. [15] 张宝吉,陈思源.渔船随浪、尾斜浪下骑浪/横甩直接数值模拟[J].华中科技大学学报(自然科学版), 2021, 49(4):44-49. [16] 叶沈阳,陈思源,何适, 等.考虑波浪漂移力的渔船骑浪/横甩计算和临界区域规避[J].船舶, 2022, 33(4):55-62. [17] BONCI M, JONG P D, WALREE F V, et al.The steering and course keeping qualities of high-speed craft and the inception of dynamic instabilities in the following sea[J]. Ocean Engineering, 2019, 194: 106636. [18] GUALENI P, PAOLOBELLO D, PETACCO N, et al.Seakeeping time domain simulations for surf-riding/broaching: investigations toward a direct stability assessment[J]. Journal of Marine Science and Technology, 2020, 25:1120-1128. [19] MANIYAPPAN S, UMEDA N, MAKI A, et al.Effectiveness and mechanism of broaching-to prevention using global optimal control with evolution strategy (CMA-ES)[J]. Journal of Marine Science and Technology, 2021, 26:382-394. [20] MANIYAPPAN S, UMEDA N.Broaching-to prevention in real-time using momentary state feedback control focusing on the saddle point in the system[J]. Journal of Marine Science and Technology, 2022, 27:827-839. [21] 石博文,刘正江,杨波.CFD方法的船舶骑浪稳性研究[J].哈尔滨工程大学学报, 2017, 38(7):1035-1040. [22] BEGOVIC E, GATIN I, JASAK H, et al.CFD simulations for surf-riding occurrence assessment[J]. Ocean Engineering, 2020, 218: 107975. [23] GONG J, LI Y, FU Z, et al.Study on the characteristics of Trimaran’s surf-riding in stern waves by a hybrid method[J]. Ocean Engineering, 2022, 265: 112603. [24] GONG J, LI Y, CUI M, et al.Study on the surf-riding and broaching of trimaran in oblique stern waves[J]. Ocean Engineering, 2022, 266: 112995. [25] LIU L, YAO C, FENG D, et al.Numerical study of the interaction between the pure loss of stability, surf-riding, and broaching on ship capsizing[J]. Ocean Engineering, 2022, 266: 112868. [26] MA C, MA N, GU X.Numerical study on hydrodynamic forces and course stability of a ship in surf-riding condition based on planar motion mechanism tests[J]. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143: 061901. [27] GU M, CHU J, HAN Y, et al.Study on vulnerability criteria and model experiment for surf-riding/broaching[J]. Journal of Ship Mechanics, 2018, 22(3): 287-295. [28] MATSUBARA M, UMEDA N, MATSUDA A.Probabilistic estimation of the large heel due to broaching associated with surf-riding for a ship in short-crested irregular waves and its experimental validation[J]. Ocean Engineering, 2023, 269: 113540. [29] HTET T Z, UMEDA N, MAKI A, et al.Estimation of broaching probability using wave-induced forces and moments measured in captive model tests[J]. Journal of Marine Science and Technology, 2019, 24:317-327. [30] BONCI M, JONG P D, WALREE F V, et al.The heel-induced sway force and yaw moment of a high-speed craft in following regular waves[J]. Journal of Marine Science and Technology, 2020, 25: 312-325. [31] 封培元,范佘明,刘小健. IMO第二代完整稳性骑浪横甩衡准规范研究[J].船舶力学, 2020, 24(1):41-48. [32] 高勋海. 骑浪/横甩薄弱性衡准程序开发及实船应用研究 [D]. 大连:大连理工大学, 2018. [33] 储纪龙,鲁江,吴乘胜, 等.骑浪/横甩薄弱性衡准方法影响因素分析[J].水动力学研究与进展(A辑), 2016, 31(3):341-345. [34] FENG P Y, FAN S M, NIE J, et al.The influence of wave surge force on surf-riding/broaching vulnerability criteria check[J]. Journal of Hydrodynamics, 2017, 29(4): 596-602. [35] BEGOVIC E, BERTORELLO C, BOCCADAMO G, et al.Application of surf-riding and broaching criteria for the systematic series D models[J]. Ocean Engineering, 2018, 170: 246-265. [36] SHIN D M, MOON B Y, CHUNG J.Application of surf-riding and broaching mode based on IMO second generation intact stability criteria for previous ships[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 545-553. [37] SZOZDA Z, KRATA P.Towards evaluation of the second generation intact stability criteria-examination of a fishing vessel vulnerability to surf-riding, based on historical capsizing[J]. Ocean Engineering, 2022, 248: 110796. [38] 封培元,蔡佑林,范佘明.喷水推进船骑浪运动建模及时域仿真[J].中国舰船研究, 2021, 16(3):38-43. [39] FENG P, CAI Y, ZHOU Y, et al.Complements to level 2 surf-riding/broaching vulnerability criterion regarding waterjet propelled ships and wave surge force correction[J]. Ocean Engineering, 2023, 272: 113843. [40] YU L, MA N, GU X.On the mitigation of surf-riding by adjusting center of buoyancy in design stage[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(3): 292-304. [41] HTET T Z, UMEDA N, MATSUDA A, et al.Effect of above-waterline hull shape on broaching-induced roll in irregular stern-quartering waves[J]. Journal of Marine Science and Technology, 2018. [42] 储纪龙,顾民,鲁江, 等. 船型参数对船舶骑浪/横甩薄弱性衡准影响分析 [C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册).北京:海洋出版社, 2019. [43] 何兆龙. 船型参数对骑浪/横甩薄弱性衡准影响分析 [D]. 大连:大连理工大学, 2020. [44] 庄智博. 船型变化对二代稳性各失效模式影响的分析 [D].大连:大连理工大学, 2021. [45] 马帅. 船体形状对骑浪/横甩薄弱性影响分析 [D].大连:大连理工大学, 2022. [46] 代理想. 船舶随浪航行安全性监测预警研究 [D].大连:大连海事大学, 2017. [47] 翁建军,郑道,张兢.船舶第二代完整稳性机理及船舶操纵技术分析[J].中国航海, 2017, 40(3):88-92. [48] 封培元,范佘明.二代稳性骑浪/横甩稳性失效模式的营运限制及操船指南研究[J].中国造船, 2021, 62(2):167-175. [49] BEGOVIC E, BERTORELLO C, RINAURO B, et al.Simplified operational guidance for second generation intact stability criteria[J]. Ocean Engineering, 2023, 270: 113583. |