[1] Executive Summary-CO2 Emissions in2023-Analysis- IEA[EB/OL].(2024-08-28) [2024-04-29]. https://www.iea.org/reports/co2-emissions-in-2023/executive-summary. [2] 2023 IMO Strategy on Reduction of GHG Emissions from Ships[EB/OL]. (2024-08-28)[2024-04-29]. https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx. [3] 郑洁,柳存根,林忠钦. 绿色船舶低碳发展趋势与应对策略[J]. 中国工程科学,2020,22(6):94-102. [4] BILGILI L,ÖLÇER A I. IMO 2023 strategy-Where are we and what’s next?[J]. Marine Policy,2024,160:105953. [5] KIM S,ROH M,OH M,et al.Estimation of ship operational efficiency from AIS data using big data technology[J]. International Journal of Naval Architecture and Ocean Engineering,2020,12:440-454. [6] 国际航行海船能效设计指数(EEDI)计算与验证指南2022[EB/OL].(2024-08-28) [2024-04-21]. https://www.ccs.org.cn/ccswz/articleDetail?id=202211240969937910. [7] 现有船舶能效指数(EEXI)计算与验证指南2022[EB/OL].(2024-08-28) [2024-04-21]. https://www.ccs.org.cn/ccswz/articleDetail?id=202210310920052288. [8] 《国际防止船舶造成污染公约》附则VI-防止船舶造成大气污染规则-大连海事大学国际海事公约研究中心[EB/OL].(2024-08-28) [2024-04-21]. https://imcrc.dlmu.edu.cn/info/1107/4664.htm. [9] Guidelines on life cycle GHG intensity of marine fuels (LCA Guidelines)[EB/OL].(2024-08-28) [2024-05-12]. https://www.imo.org/en/OurWork/Environment/Pages/Lifecycle-GHG---carbon-intensity-guidelines.aspx. [10] 周建华,韩志强,朱汉华,等. 某穿梭油轮EEDI多方案优化对比分析[J]. 船海工程,2023,52(6):77-82. [11] 石峰,吴杰. 基于EEDI的8000吨级近海油轮节能减排因素分析[J]. 南通航运职业技术学院学报,2019,18(3):31-38. [12] NORSTAD I,FAGERHOLT K,LAPORTE G.Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies,2011,19(5):853-865. [13] VesselsValue Launches Energy Efficiency White Paper: EEDI/EEXI overview,analysis and impact_信德海事网-专业海事信息咨询服务平台[EB/OL]. (2024-08-28)[2024-04-03]. https://www.xindemarinenews.com/en/market/2022/0218/36369.html. [14] 杜立达. 集装箱船船舶主机选型研究[D]. 大连:大连海事大学,2018. [15] 丁健亮,康煜晗,张亮,等. 复合载荷作用下船体结构优化设计[J]. 船舶工程,2023,45(增刊1):193-197. [16] 刘长铖,李文辉,张文平,等. 大型船用柴油机余热利用系统性能研究[J]. 浙江大学学报(工学版),2017,51(11):2259-2264. [17] BAYRAMOĞLU K. The effects of alternative fuels,cruising duration and variable generators combination on exhaust emissions,energy efficiency existing ship index (EEXI) and carbon intensity rating (CII)[J]. Ocean Engineering,2024,302:117723. [18] 屈紫懿,孔存金,印洪浩,等. 远洋船舶尾气碳捕集技术及发展趋势研究[J]. 环境工程技术学报,2024,14(1):17-24. [19] 吴浩,杨子烨,曹建鑫,等. 大尺度自航模气层减阻试验研究[J]. 中国舰船研究,2023,19(5):43-48. [20] 张宏森,魏钰博,刘万宇,等. 一种计及海上风浪因素的船舶定航线航速优化方法研究[J]. 无线电工程,2022,52(5):724-730. [21] MA W,HAN Y,TANG H,et al.Ship route planning based on intelligent mapping swarm optimization[J]. Computers & Industrial Engineering,2023,176:108920. [22] 尹旭军. 高压岸电系统在集装箱船的应用与节能分析[J]. 上海节能,2024(3):511-517. [23] ZINCIR B.Slow steaming application for short-sea shipping to comply with the CII regulation[J]. Brodogradnja,2023,74(2):21-38. [24] LEAPER R.The role of slower vessel speeds in reducing greenhouse gas emissions,underwater noise and collision risk to whales[J]. Frontiers in Marine Science,2019,6:505. [25] 黄格省,李锦山,魏寿祥,等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展,2019,38(12):5217-5224. [26] 姚彬,王丽莉,张国辉. 氢燃料电池用于发电技术的研究现状[J]. 应用化工,2023,52(12):3466-3468. [27] SUN D,WANG C,SHEN Q.A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy[J]. Energy,2024,294:130894. [28] LI T,HE X,GAO P.Analysis of offshore LNG storage and transportation technologies based on patent informatics[J]. Cleaner Engineering and Technology,2021,5:100317. [29] YAO S,ZHANG Z,WEI Y,et al.Integrated design and optimization research of LNG cold energy and main engine exhaust heat utilization for LNG powered ships[J]. Case Studies in Thermal Engineering,2022,33:101976. [30] MUHAMMED N S,GBADAMOSI A O,EPELLE E I,et al.Hydrogen production,transportation,utilization,and storage: Recent advances towards sustainable energy[J]. Journal of Energy Storage,2023,73:109207. [31] ELAOUZY Y,EL FADAR A.Water-energy-carbon-cost nexus in hydrogen production,storage,transportation and utilization[J]. International Journal of Hydrogen Energy,2024,53:1190-1209. [32] YU Y,ZHANG C,ZHANG Z,et al.Non-neutral catalyst and reaction energy recovery to minimize the energy consumption for hydrogen production by recyclably indirect H2O electrolysis and CO2 capture[J]. Energy Conversion and Management,2019,180:1203-1216. [33] 王磊,李银武,陈秋辰. 磷酸铁锂电池动力技术在船舶上的应用进展[J]. 珠江水运,2024(3):115-117. [34] 姜媛媛,屠芳芳,张芳平,等. 高性能磷酸铁锂电池补锂技术及机制研究[J]. 储能科学与技术,2024,13(5):1435-1442. [35] 陈悦林,马宏忠,朱沐雨,等. 磷酸铁锂电池组在电网调峰工况下的液冷技术研究[J]. 储能科学与技术,2024,13(8):2704-2712. [36] 颜群轩,罗碧云,陈嘉鑫,等. 废旧磷酸铁锂电池可持续回收技术研究进展[J]. 矿冶工程,2023,43(4):174-177. [37] 卢明剑,董胜节,严新平,等. 船舶碳捕集、利用与封存技术综述[J]. 交通运输工程学报,2024,24(2):1-19. [38] ZHANG L,YE K,WANG Y,et al.Performance analysis of a hybrid system combining cryogenic separation carbon capture and liquid air energy storage (CS-LAES)[J]. Energy,2024,290:129867. |