1. Marine Design & Research Institute of China, Shanghai 200011, China; 2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
[1] CHYBA M.AUV: Autonomous underwater vehicles[J]. Ocean Engineering, 2009(1):1. [2] MIRANDA M F, VAMVOUDAKIS K G.Online optimal auto-tuning of PID controllers for tracking in a special class of linear systems[C]// American Control Conference(ACC). Boston, 2016:5443-5448. [3] CARLUCHO I, DE PAULA M, VILLAR S A, et al.Incremental Q-learning strategy for adaptive PID control of mobile robots[J]. Expert Systems with Apphcations, 2017, 80: 183-199. [4] 牛广智. 水面无人艇的无模型运动控制方法研究[D].哈尔滨:哈尔滨工程大学, 2020. [5] 李晔, 庞永杰, 万磊,等. 水下机器人S面控制器的免疫遗传算法优化[J]. 哈尔滨工程大学学报, 2006(增1): 324-330. [6] 何斌, 万磊, 姜大鹏,等. 基于预测模型的模糊参数自寻优S面控制器[J]. 哈尔滨工程大学学报, 2014(3): 267-273. [7] NGUYEN H, LA H.Review of deep reinforcement learning for robot manipulation[C]//2019 Third IEEE International/Conference on Robotic Computing(IRC). IEEE, 2019: 590-595. [8] 程健. 水下机器人水动力性能及其运动控制研究[D]. 大连:大连理工大学, 2018. [9] 张佩. 基于强化学习的水下机器人运动控制方法研究[D]. 哈尔滨:哈尔滨工程大学, 2020. [10] 曾江峰. 复杂海况下USV路径跟踪控制方法研究[D]. 哈尔滨:哈尔滨工程大学, 2019. [11] 陈奇石. 强化学习在仿人机器人行走稳定控制上的研究及实现[D]. 广州:华南理工大学, 2016. [12] 王婷婷. 面向连续状态的神经网络强化学习研究[D]. 徐州:中国矿业大学, 2016. [13] KROEGER T.Sensor-based control, real-time motion planning, and reinforcement learning for industrial robots[C]//2017 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2017: 3. [14] KIUMARSI B, VAMVOUDAKIS K G, MODARES H, et al.Optimal and autonomous control using reinforcement learning: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017(6): 2042-2062.