[1] 2021年中国移动源环境管理年报(摘录二)[J]. 环境保护, 2021(19): 60-70. [2] 中华人民共和国生态环境部. 中国移动源环境管理年报(2022年) [R]. 2022. [3] 杨捷波, 高占斌, 宋佳, 等. 掺水乳化油对船用柴油机性能影响优化分析[J]. 舰船科学技术, 2021(19): 102-107. [4] 王科, 赵昌普, 蔡玉洁. 富氧燃烧与EGR对船用柴油机NO-碳烟排放和燃烧特性的影响[J]. 燃烧科学与技术, 2020(3): 248-256. [5] 马志豪, 陈占耀, 贾义, 等. 小功率非道路用柴油机动力、经济及排放特性[J]. 农业工程学报, 2017(21): 78-84. [6] QU J, FENG Y, ZHU Y, et al.Design and thermodynamic analysis of a combined system including steam Rankine cycle, organic Rankine cycle, and power turbine for marine low-speed diesel engine waste heat recovery[J]. Energy Conversion and Management, 2021, 245: 114580. [7] WU B, JIA Z, LI Z G, et al.Different exhaust temperature management technologies for heavy-duty diesel engines with regard to thermal efficiency[J]. Applied Thermal Engineering, 2021, 186: 116495. [8] BAYRAMOĞLU K, ÖZMEN G. Design and performance evaluation of low-speed marine diesel engine selective catalytic reduction system[J]. Process Safety and Environmental Protection, 2021, 155: 184-196. [9] 金玉山. 船用低速柴油机SCR喷雾及反应仿真分析[D]. 哈尔滨:哈尔滨工程大学, 2016. [10] 金玉山, 李虎生, 刘猛. 船用SCR系统尿素溶液喷嘴试验分析比较[J]. 柴油机, 2015(1): 17-20, 45. [11] 宋鑫. 基于多因素角度分析喷射结构对船机SCR的影响[J]. 舰船科学技术, 2014(11): 172-175. [12] 王满, 张洪朋, 付洪发. 船舶SCR系统陶瓷催化-过滤器烟气正向流动状态仿真与结构优化[J]. 船舶工程, 2017(8): 60-64. [13] 朱元清. 船用低速柴油机SCR技术的发展与应用[J]. 船舶工程, 2020(10): 12-17. [14] LIU T, WEI L, YAO Y, et al.La promoted CuO-MnOx catalysts for optimizing SCR performance of NO with CO[J]. Applied Surface Science, 2021, 546: 148971. [15] SAVVA Z, PETALLIDOU K C, DAMASKINOS C M, et al.H2-SCR of NOX on low-SSA CeO2-supported Pd: the effect of Pd particle size[J]. Applied Catalysis A: General, 2021, 615: 118062. [16] MENDES A N, ZHOLOBENKO V L, THIBAULT-STARZYK F, et al.On the enhancing effect of Ce in Pd-MOR catalysts for NOX CH4-SCR: A structure-reactivity study[J]. Applied Catalysis B: Environmental, 2016, 195: 121-131. [17] 叶青, 闫立娜, 霍飞飞, 等. Fe柱撑海泡石负载Cu催化剂:结构特点及其C3H6选择性催化还原NO催化性质[J]. 无机化学学报, 2012(1): 103-112. [18] DAMMA D, ETTIREDDY P R, REDDY B M, et al.A review of low temperature NH3-SCR for removal of NOX[J]. Catalysts, 2019(4): 349. [19] 金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D]. 杭州:浙江大学, 2010. [20] QING M, SU S, WANG L, et al.Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: reaction mechanism and effects of NO and NH3[J]. Chemical Engineering Journal, 2019, 361: 1215-1224. [21] MAGNUSSON M, FRIDELL E, INGELSTEN H H. The influence of sulfur dioxide and water on the performance of a marine SCR catalyst[J]. Applied Catalysis B: Environmental, 2012, 111/112: 20-26. [22] WIJAYANTI K, ANDONOVA S, KUMAR A, et al. Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34[J]. Applied Catalysis B: Environmental, 2015, 166/167: 568-579. [23] WIJAYANTI K, LEISTNER K, CHAND S, et al.Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016(8): 2565-2579. [24] SHI Y, TAN S, WANG X, et al.Regeneration of sulfur-poisoned CeO2 catalyst for NH3-SCR of NOX[J]. Catalysis Communications, 2016, 86: 67-71. [25] SHEN M, WANG Z, LI X, et al.Effects of regeneration conditions on sulfated CuSSZ-13 catalyst for NH3-SCR[J]. Korean Journal of Chemical Engineering, 2019(8): 1249-1257. [26] JIANG Y, LAI C, LI Q, et al.The poisoning effect of KCl and K2O on CeO2-TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Fuel, 2020, 280: 118638. [27] 王晨, 陈泽翔, 王建强, 等. 基于NH3-SCR反应铜基小孔分子筛催化剂Na中毒对比研究[J]. 化工学报, 2020(12): 5551-5560. [28] ZHU N, SHAN W, SHAN Y, et al.Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOX with NH3[J]. Chemical Engineering Journal, 2020, 388: 124250. [29] KONG M, LIU Q, ZHOU J, et al.Effect of different potassium species on the deactivation of V2O5-WO3/TiO2 SCR catalyst: comparison of K2SO4, KCl and K2O[J]. chemical Engineering Journal, 2018, 348: 637-643. [30] LI X, LI X, YANG R T, et al.The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: comparison of different forms of calcium[J]. Molecular Catalysis, 2017, 434: 16-24. [31] 闫东杰, 李亚静, 玉亚, 等. 碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响[J]. 燃料化学学报, 2018(12): 1513-1519. [32] NICOSIA D, CZEKAJ I, KRÖCHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: part II. characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B: Environmental, 2008(3): 228-236. [33] LI X, LI J, PENG Y, et al.Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen[J]. Applied Catalysis B: Environmental, 2016, 184: 246-257. [34] 石晓燕, 丁世鹏, 贺泓, 等. 改进钒基SCR脱硝催化剂的抗碱金属中毒性能[J]. 环境工程学报, 2014(5): 2031-2034. [35] 沈伯雄, 施建伟, 杨婷婷, 等. 选择性催化还原脱氮催化剂的再生及其应用评述[J]. 化工进展, 2008(1): 64-67. [36] 唐韬, 李懋, 张婷, 等. 柴油机SCR系统催化器温度场试验解析[J]. 内燃机与动力装置, 2017(2): 1-4. [37] TURCO M, LISI L, PIRONE R, et al.Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V2O5/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 1994(2): 133-149. [38] 唐韬, 赵彦光, 华伦, 等. 柴油机SCR系统尿素水溶液喷雾分解的试验研究[J]. 内燃机工程, 2015(1): 1-5. [39] 莫春兰, 莫益涛, 陈俊红, 等. 柴油机SCR系统尿素的热分解过程研究[J]. 燃烧科学与技术, 2021(1): 16-22. [40] BONFILS A, CREFF Y, LEPREUX O, et al.Closed-loop control of a SCR system using a NOX sensor cross-sensitive to NH3[J]. Journal of Process Control, 2014(2): 368-378. [41] 刘颖帅, 胡广地, 齐宝华. 固态SCR技术降低柴油机尾气NOX的排放[J]. 环境工程学报, 2021(2): 626-634. [42] 吕炎, 张文涛, 赵超, 等. 船舶低速机低压SCR系统设计难点分析[C]//2016中国环境科学学会学术年会论文集(第三卷), 海口, 2016: 541-546. [43] 中国船级社. 选择性催化还原(SCR)系统船上应用指南[S]. 北京: 中国船级社, 2022. [44] 王耀霖. 船舶尾气高效脱硝系统的开发与优化[D]. 杭州:浙江大学, 2017. [45] 殷华兵, 王伟彬. 远洋船舶NOX废气处理系统SCR选型及实船安装[J]. 船舶与海洋工程, 2019(1): 43-50. [46] DU X, GAO X, FU Y, et al.The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. Journal of colloid and interface science, 2012(1):406-412. [47] 刘雪松, 汪澜, 房晶瑞, 等. 水热处理和钨添加对低钒催化剂高温脱硝性能的影响[J]. 化工进展, 2020(4): 1363-1370. [48] CHEN L, LI J, GE M.Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOX by NH3[J]. The Journal of Physical Chemistry C, 2009(50): 21177-21184. [49] ZHANG L, WANG D, LIU Y, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B: Environmental, 2014, 156/157: 371-377. [50] 孟鹏通, 范超, 吕文婷, 等. 整体式堇青石负载的Cu-SSZ-13分子筛催化剂的制备及其氨选择性催化还原脱硝性能[J]. 燃料化学学报, 2020(10): 1216-1223. [51] 赵欣, 黄垒, 李红蕊, 等. 过渡金属(Cu, Fe, Mn, Co)改性高分散V2O5/TiO2作为高效NH3-SCR脱硝催化剂[J]. 催化学报, 2015(11): 1886-1899. [52] 张晨光,封硕,邢玉烨,等.柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J].化工进展, 2023(3): 1321-1331. [53] 时屹然. 基于结构优化MnCoOX催化剂的NH3-SCR机理及抗硫抗碱机制研究[D]. 北京:北京科技大学, 2021. [54] 杨晓帆, 唐为勇, 陈海波, 等. 铜基菱沸石催化剂——适用于未来中国柴油车排放法规的选择性催化还原技术[J]. 内燃机工程, 2016(6): 72-78. [55] 施赟, 王晓祥, 李素静, 等. 柴油车NH3选择性催化还原NOX催化剂研究进展[J]. 高校化学工程学报, 2019(1): 10-20. [56] 李新华. 车用Cu/SSZ-13 NH3-SCR催化剂可控制备及硫中毒、再生机制研究[D]. 天津:天津大学, 2020. [57] HU G, YANG J, TIAN Y, et al.Effect of Ce doping on the resistance of Na over V2O5-WO3/TiO2 SCR catalysts[J]. Materials Research Bulletin, 2018, 104: 112-118. [58] 鲍强, 周昊, 刘建成, 等. 新型CeO2-V2O5/TiO2-SiO2催化剂高效抗碱金属中毒性能[J]. 浙江大学学报(工学版), 2015(10): 1855-1862. [59] CHEN Y, WANG M, DU X, et al.High resistance to Na poisoning of the V2O5-Ce(SO4)2/TiO2 catalyst for the NO SCR reaction[J]. Aerosol and Air Quality Research, 2018(12): 2948-2955. [60] 谢巧, 张雷, 胡正华, 等. 低温NH3-SCR反应中催化剂形貌效应的研究进展[J]. 工业催化, 2021(4): 28-34. [61] 郭鹏翔. 氢发动机EGR与多次喷射耦合电子控制系统研究[D]. 郑州:华北水利水电大学, 2020. [62] 姚春德, 陈超, 姚安仁, 等. 基于DMCC发动机台架的甲醇-SCR催化还原NOX的研究[J]. 工程热物理学报, 2020(2): 498-506. [63] 张肖肖. 富氧条件下氢气选择催化还原汽车尾气氮氧化物的研究进展[J]. 化工进展, 2019(3): 1362-1370. [64] PATEL V K, SHARMA S.Effect of oxide supports on palladium based catalysts for NO reduction by H2-SCR[J]. Catalysis Today, 2021, 375: 591-600. [65] OKAFOR E C, SOMARATHNE K D K A, HAYAKAWA A, et al. Towards the development of an efficient low-NOX ammonia combustor for a micro gas turbine[J]. Proceedings of the Combustion Institute, 2019(4): 4597-4606. |