[1] ITTC. Report of the High-speed Marine Vehicle Committee[C]// Proceedings of the 18th International Towing Tank Conference. Kobe, Japan: ITTC, 1987: 275-344. [2] ALLISON J.Marine waterjet propulsion[J]. SNAME Transactions, 1993, 101: 275-335. [3] ALEXANDER K V, COOP H G, VAN TERWISGA T J. Waterjet-hull interaction: recent experimental results[J]. Transactions of SNAME, 1994, 102: 87-105. [4] COOP H G.Investigation of hull-waterjet interaction effects[D]. Christchurch: University of Canterbury, 1995. [5] VAN TERWISGA T J. Waterjet-hull Interaction [D]. Delft: Delft University of Technology, 1996. [6] Waterjets Group.Final report of and recommendations to the 21st ITTC[C]//Proceedings of the 21st International Towing Tank Conference. Trondheim, Norway: ITTC, 1996: 189-209. [7] WISLICENUS G F.Flud mechanics of turbomachinery[M]. New York: McGraw-Hill Book Co., 1947: 1-28. [8] BRUCE E P, GEARHART, W S, ROSS, J R, et al.The design of pumpjets for hydrodynamic propulsion[C]// Proceedings of the International Symposium on Fluid Mechanics and Design of Turbomachinery, 1970. [9] McBRIDE M W. Refinement of the mean streamline method of blade section design[J]. ASME Journal of Fluid Engineering, 1977, 99:561-566. [10] 金平仲,曾松祥,沈奉海,等. 轴流泵的变环量设计方法[J]. 水泵技术,1985(2):14-20. [11] LEWIS R I.Turbomachinery performance analysis[M]. Amsterdam: Elsevier, 1996. [12] ZANGENEH M.A compressible three‐dimensional design method for radial and mixed flow turbomachinery blades[J]. International Journal for Numerical Methods in Fluids, 1991(5): 599-624. [13] ZANGENEH M.Inviscid-viscous interaction method for three-dimensional inverse design of centrifugal impellers[J]. Journal of turbomachinery, 1994(2): 280-290. [14] GOTO A, TAKEMURA T, ZANGENEH M.Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method: part 2—experimental validation[J]. Journal of turbomachinery, 1996(3): 544-551. [15] BONAIUTI D, ZANGENEH M, AARTOJARVI R, et al.Parametric design of a waterjet pump by means of inverse design, CFD calculations and experimental analyses[J]. Journal of Fluids Engineering, 2010(3): 031104. [16] 蔡佑林, 王立祥, 张新. 混流泵叶轮三元可控速度矩的设计[J]. 流体机械, 2005(11): 13-15, 46. [17] TAYLOR T E, KERWIN J E.Waterjet pump design and analysis using a coupled lifting surface and RANS procedure[C]// Proceedings of International Conference on Waterjet Propulsion II. Amsterdam: RINA, 1998: 1-9. [18] 常书平, 王永生, 丁江明, 等. 混流式喷水推进泵水力设计和性能预报[J]. 哈尔滨工程大学学报, 2011(6):708-713. [19] 常书平, 王永生, 靳栓宝. 轴流式喷水推进泵水力设计和性能检验[J]. 哈尔滨工程大学学报, 2011(10):1278-1282. [20] 靳栓宝, 王永生, 丁江明, 等. 混流式喷水推进泵三元设计及数值试验[J]. 哈尔滨工程大学学报, 2012(10):1223-1227. [21] 龙云. 喷水推进泵水力优化设计方法及空化研究[D]. 上海:上海交通大学, 2018. [22] 郝宗睿, 李超, 任万龙, 等. 基于改进粒子群算法的喷水推进泵叶片优化设计[J]. 排灌机械工程学报, 2020(6):566-570. [23] PARK W G, YUN H S, CHUN H H, et al.Numerical analysis of intake flow of waterjet pump[C]// Proceedings of the 2nd PNU International Colloquium on Waterjet, Busan, Korea, 2002: 73-91. [24] CHOI G I, AHN Y W.2002, The generation of waterjet inlet geometry using NURBS[C]// Proceedings of the 2nd PNU International Colloquium on Waterjet. Busan, Korea, 2002: 105-110. [25] BULTEN N W H, VERBEEK R. Design of optimal inlet duct geometry based on vessel operational profile [C]// Proceedings of the International Conference on Fast Sea Transportation, Ischia, Italy, 2003: 35-40. [26] WILSON M B, CHESNAKAS C, GOWING S, et al.Analysis of hull boundary layer velocity distributions with and without active waterjet inlets[C]// Proceedings of International Conference on Waterjet Propulsion 4, London, UK, 2004: 29-37. [27] 汲国瑞, 蔡佑林, 李宁, 等. 喷水推进进口流道唇口参数对出口不均匀度和驻点位置影响分析[J]. 中国造船, 2016(4): 109-115. [28] CHISLETT M S, ECLECTICS M, MΦLGAARD A. Waterjet steering and stopping forces[C]//The International Conference on Waterjet Propulsion Latest Developments, Amsterdam, Sweden, 1998. [29] AARTOJÄRVI R, HEDER M, LUNDBERG J.et al. Implementation of results of CFD analysis to the design of a new waterjet steering and reversing unit[C]//Proceedings of International Conference on Waterjet Propulsion 4, London, UK, 2004: 1-9. [30] 田乃东. 高速两栖车辆用喷水推进操舵倒航机构的研究[D].上海:上海交通大学, 2009. [31] 王俊,李贵斌,张岩,等.喷水推进一体式操舵倒航机构中方向舵受力的CFD研究[J].水动力学研究与进展(A辑), 2022(1):21-27. [32] 方丹群, 张斌, 孙家麟,等. 噪声控制工程学[M]. 北京: 科学出版社, 2013. [33] 盛美萍, 王敏庆, 孙进才. 噪声与振动控制技术基础[M]. 北京: 科学出版社, 2007. [34] 汤方平. 喷水推进轴流泵设计及紊流数值分析[D]. 上海:上海交通大学, 2007. [35] HU P, ZANGENEH M.CFD calculation of the flow through a waterjet pump[C]//International Conference on Waterjet Propulsion III, Gothenborg, 2001. [36] 王福军. CFD 在水力机械湍流分析与性能预测中的应用[J]. 中国农业大学学报, 2005(4):75-80. [37] 王福军, 黎耀军, 王文娥,等. 水泵CFD应用中的若干问题与思考[J]. 排灌机械, 2005(5):1-10. [38] LI W, AGARWAL R K, JI L L, et al.Numerical simulation of incipient rotating stall characteristics in a mixed flow pump[C]//Proceedings of the AIAA SciTech 2019 Forum, San Diego, California. Virginia: AIAA, 2019. [39] 刘承江, 丁江明, 苏永生,等. 喷水推进泵空化性能数值模拟与试验验证[J]. 船舶力学, 2018(1):38-44. [40] 邱继涛, 李宁, 王宗龙. 喷水推进轴流泵汽蚀性能RANS模拟与不确定度分析[J]. 船舶工程, 2021(10):82-85. [41] 郭嫱, 王宇, 黄先北,等. 喷水推进泵叶轮空化涡流的数值模拟研究[J]. 船舶力学, 2022(1):30-37. [42] HUANG R F,JI B,LUO X W,et al.Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump[J].Journal of Mechanical Science and Technology, 2015(9):3707-3716. [43] 龙云, 冯超, 王路逸, 等.喷水推进泵临界空化工况空化流态试验[J]. 北京航空航天大学学报, 2019(8):1512-1518. [44] 李伟,杨震宇,施卫东,等.喷水推进泵非均匀进流研究进展[J].排灌机械工程学报,2022(8):757-765. [45] 邱继涛, 尹晓辉, 王仁智. 喷水推进器进口流道水动力性能分析[J]. 中国舰船研究, 2022(1):11-17. [46] 汲国瑞,蔡佑林,李宁,等.喷水推进进口流道倾斜角对其效率影响分析[J].舰船科学技术, 2016(5):55-58, 96. [47] 史俊, 冯学东, 李光琛,等. 进口长度对船舶喷水推进器进水流道性能的影响[J]. 船海工程, 2016(6): 81-84, 88. [48] 罗灿, 成立, 刘超. 格栅安装角对喷水推进泵装置性能影响的数值模拟[J]. 扬州大学学报(自然科学版), 2015(2):65-69. [49] 王永生, 王绍增, 靳栓宝,等. 装有格栅的进水流道进水口流通能力的研究[J]. 华中科技大学学报(自然科学版), 2012(10):72-77. [50] HUANG C L,DAI R,WANG Z L.Effects of upstream vortex generators on the intake duct performance for a waterjet propulsion system[J].Ocean Engineering,2021, 239: 109838. [51] HUANG R F,DAI Y X,LUO X W,et al.Multi-objective optimization of the flush-type intake duct for a waterjet propulsion system[J].Ocean Engineering,2019,187:106172. [52] 李贵斌, 王俊, 王立祥. 喷水推进操舵倒航机构受力研究[J]. 水动力学研究与进展(A辑), 2020(1): 84-89. [53] ZHAI Z, LIU X, WANG J, et al.Numerical simulations of the steering device in waterjet propulsion and analyses of steering forces[C]//Proceedings of the 13th International Conference on Hydrodynamics, Songdo, Korea, 2018. [54] 王俊, 李贵斌, 张岩,等. 喷水推进一体式操舵倒航机构中方向舵受力的CFD 研究[J]. 水动力学研究与进展(A 辑), 2022(1): 21-27. [55] BULTEN N, VERBEEK R.CFD simulation of the flow through a waterjet installation[C]//Proceedings of International Conference on Waterjet Propulsion 4-Latest Developments, London, UK, 2004. [56] 郭军, 陈作钢, 戴原星, 等. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020(1): 1-9. [57] 常书平, 姚丁元, 李昆鹏,等. 基于推力数值计算的喷水推进船快速性预报与验证[J]. 船舶工程, 2021(2): 63-66, 157. [58] DELANEY K, DONNELLY M, EBERT M, et al.Use of RANS for waterjet analysis of a high-speed sealift concept vessel[C]//First International Symposium on Marine Propulsors, Trondheim, Nowary, 2009. [59] ESLAMDOOST A.The Hydrodynamics of Waterjet/Hull Interaction[D]. Gothenburg: Chalmers University of Technology, 2014. [60] HINO T, OHASHI K.Numerical simulation of flow around a waterjet propelled ship[C]//First International Symposium on Marine Propulsors, Trondheim, Nowary, 2009. [61] 戴原星,张志远,刘建国,等.喷水推进三体船阻力与自航数值模拟研究[J].船舶, 2019(1):105-111. [62] 戴原星, 王金宝, 尹晓辉,等. 某V型船尾四台喷水推进器进流特性数值模拟与分析[J]. 中国造船, 2018(2): 72-79. [63] 张恒, 王仁智, 蔡佑林,等. 喷射流浸没深度对喷水推进尾迹场的影响分析[J]. 船舶, 2022(3): 20-27. [64] 付建,丁江明,李嘉.浸没式喷水推进器水动力噪声的数值预报[J].大连海事大学学报,2023(1):85-92. [65] BULTEN N.A breakthrough in waterjet propulsion systems[C]//Proceedings of Doha International Maritime Defence Exhibition and Conference, 2008: 1-6. [66] PERI D, KANDASAMY M, TAHARA Y, et al.Simulation based design with variable physics modeling and experimental verification of a water-jet propelled catamaran[C]//29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden, 2012. [67] GUO J, ZHANG Y, CHENG Z G, et al.CFD-based multi-objective optimization of a waterjet-propelled trimaran[J]. Ocean Engineering, 2020, 195: 106755. [68] LIGHTHILL M J.On sound generated aerodynamically I. General theory[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1952, 211: 564-587. [69] CURLE N.The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1955, 231: 505-514. [70] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1969, 264: 321-342. [71] SUN Y, LIU W, LI T Y.Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct[J]. Ocean Engineering, 2019, 191: 106489. [72] 付建,王永生,靳栓宝,等.LES和DES在流体动力噪声预报中的适用性分析[J].华中科技大学学报(自然科学版), 2015(2):66-70. [73] 付建, 王永生, 靳栓宝. 混流泵水动力噪声的数值预报方法[J].中南大学学报(自然科学版), 2016(1):62-68. [74] 刘强, 王永生, 张明宇,等. 喷水推进器水下辐射噪声边界元计算方法[J]. 中国舰船研究, 2017 (4): 83-88. [75] 刘敏, 张宁, 李新汶,等. 泵喷推进器导管对噪声传播特性的影响[J]. 舰船科学技术, 2011(8): 20-23. [76] ITTC. Waterjet system performance[C]// ITTC Quality System Manual Recommended Procedures and Guidelines, Wuxi, China, 2017: 3-10. [77] 关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社,2011. [78] 关醒凡, 袁寿其, 张建华, 等. 轴流泵系列水力模型试验研究报告[J]. 水泵技术, 2004(3): 3-7, 21. [79] 郑建华. 混流泵水力模型的试验研究[J]. 水泵技术, 1993(3): 8-10. [80] TAN D,LI Y C,WILKES I,et al.Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump[J].Journal of Fluids Engineering, 2015(11):111301. [81] VAN TERWISGA.Report of the specialist committee on validation of waterjet test procedures to the 24th ITTC[C]//The 24th International Symposium on Marine Propulsors Launceston, Australia, 2013: 87-96. [82] VAN TERWISGA.Report of the specialist committee on validation of waterjet test procedures to the 23rd ITTC[C]//The 23rd International Towing Tank Conference, Venice, Italy, ITTC. II: 387-415. [83] 王立祥, 蔡佑林. 喷水推进及推进泵设计理论和技术[M]. 上海: 上海交通大学出版社, 2018. [84] 周加建,刘建国.喷水推进装置推力直接测量台架的研究开发[J].船舶力学,2018(7):783-788. [85] 蔡佑林, 汲国瑞, 冯超, 等. 喷水推进推力测试方法[J]. 中国造船, 2022(4): 107-114. [86] COZIGN H, HALLMANN R, KOOP A H.Analysis of the velocities in the wake of an azimuthing thruster, using PIV measurements and CFD calculations[C]//Dynamic Positioning Conference, Houston, Texas, USA, 2010. [87] UZOL O,CHOW Y C,KATZ J,et al.Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices[J].Experiments in Fluids,2002(6):909-919. [88] WERNET M.The NASA subsonic jet particle image velocimetry(PIV) dataset[R]. 2011. [89] COPENHAVER W, ESTEVADEORDAL J, GOGINENI S, et al.DPIV study of near-stall wake-rotor interactions in a transonic compressor[J]. Experiments in Fluids, 2002(6):899-908. [90] 杨孟子, 冯超, 刘腾岩,等. 混流泵进出口流道内压力脉动与噪声特性试验[J]. 水泵技术, 2022(6):37-40, 45. [91] 冯超. 喷水推进混流泵空化诱导压力脉动与振动特性试验研究[R]. 上海:中国船舶及海洋工程设计研究院, 2021. [92] 刘腾岩, 冯超, 杨孟子, 等. 混流泵水力模型导叶叶片数对外特性和噪声影响试验研究[C]//第十三届全国实验流体力学学术会议, 合肥, 2023. [93] 郭正祥. 俄罗斯未来新型两栖战车构想[J]. 坦克装甲车辆, 2018(17):17-22. |